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• A standard Gaussian random matrix (hereafter referred 
to just as Gaussian matrix) has full rank with probabil-
ity 1 and is well-conditioned with a probability quite close 
to 1 and converging to 1 fast as the matrix deviates from 
the square shape and becomes more rectangular.

• If we append sufficiently many Gaussian rows or columns 
to any normalized and possibly rank deficient or ill-
conditioned matrix, then the augmented matrix has full 
rank with probability 1 and is well-conditioned with a 
probability close to 1.

• We specify and prove these properties of augmentation 
and extend them to additive preprocessing, that is, to 
adding a product of two rectangular Gaussian matrices.

• By applying our randomization techniques to a matrix 
that has numerical rank r, we accelerate the known 
algorithms for the approximation of its trailing singular 
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spaces, associated with all its positive singular values, 
except for the r largest values.

• Our algorithms use much fewer random parameters 
and run much faster when various random sparse and 
structured preprocessors replace Gaussian. Empirically 
the outputs of the resulting algorithms are as accurate as 
the outputs under Gaussian preprocessing.

• Our novel duality techniques provides formal support, 
so far missing, for these empirical observations and 
opens door to de-randomization of our preprocessing 
and to further acceleration and simplification of our 
algorithms by using more efficient sparse and structured 
preprocessors.

• Our techniques and our progress can be applied to 
various other fundamental matrix computations such as 
the celebrated low-rank approximation of a matrix by 
means of random sampling.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Randomized augmentation: outline

A standard Gaussian m × n random matrix, G (hereafter referred to just as Gaus-
sian), has full rank with probability 1 (see Theorem B.1). Furthermore, by virtue of 
Theorems B.2 and B.3, the expected spectral norms ||G|| and ||G+||, for G+ denoting 
the Moore–Penrose generalized inverse, satisfy the following estimates1:

• E(||G||) ≤ √
m +

√
n,

• E(||G+||) ≤ e
√
h

|m−n| , for h = max{m, n}, m �= n, and e = 2.71828 . . . , and so 
E(||G+||) → 0 as |m − n| → ∞.

Moreover the random norms ||G|| and ||G+|| deviate from their expected values by a 
factor f with a probability that fast converges to 0 as f → ∞.

Thus an m ×n Gaussian matrix can be considered well-conditioned with the confidence 
growing fast as the integer |m −n| increases from 0, but Theorem B.4 implies that even 
for m = n, such a matrix can be viewed as reasonably well-conditioned, depending on 
context.

Motivated by these estimates, we append reasonably many Gaussian rows or columns 
to any matrix A, possibly rank deficient or ill-conditioned, but normalized, such that 
||A|| = 1. (Our approach can fail without normalization of an input matrix.) Then we 

1 Here and hereafter ||M || denotes the spectral norm of a matrix M .



Download English Version:

https://daneshyari.com/en/article/4598408

Download Persian Version:

https://daneshyari.com/article/4598408

Daneshyari.com

https://daneshyari.com/en/article/4598408
https://daneshyari.com/article/4598408
https://daneshyari.com

