

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

Contractive maps on operator ideals and norm inequalities II

Anchal Aggarwal, Yogesh Kapil*, Mandeep Singh

Department of Mathematics, Sant Longowal Institute of Engineering and Technology, Longowal 148106, Punjab, India

ARTICLE INFO

Article history:

Received 13 September 2016 Accepted 18 October 2016 Available online 20 October 2016 Submitted by R. Bhatia

Dedicated to Professor Rajendra Bhatia on his sixtyfifth birthday

MSC:

primary 15A45 secondary 47A30, 47A63, 47B10

Keywords:

Operator algebra Norm inequality Unitarily invariant norm Operator means

ABSTRACT

Let $(\mathcal{I}, |||.|||)$ be a norm ideal of operators equipped with a unitarily invariant norm |||.|||. We exploit integral representations of certain functions to prove that certain ratios of linear operators acting on operators in \mathcal{I} are contractive. This leads to some new and old norm inequalities. We also lift a variety of inequalities to the operator setting, which were proved in the matrix setting earlier.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Let $\mathbb{B}(\mathcal{H})$ be the algebra of all bounded linear operators on a complex separable Hilbert space $(\mathcal{H}, \langle \cdot, \cdot \rangle)$. The cone of positive operators is denoted by $\mathbb{B}(\mathcal{H})_+$. We shall

^{*} Corresponding author. E-mail addresses: anchal8692@gmail.com (A. Aggarwal), yogesh_kapill@yahoo.com (Y. Kapil), msrawla@yahoo.com (M. Singh).

consider a norm ideal $(\mathcal{I}, |||.|||)$ of $\mathbb{B}(\mathscr{H})$ equipped with a unitarily invariant norm and for notational convenience we shall denote throughout this by \mathcal{I} instead of $(\mathcal{I}, |||.|||)$. As usual, we shall denote the operator norm by $||\cdot||$ and by L_X , R_Y the left, right multiplication maps on $\mathbb{B}(\mathscr{H})$ respectively, i.e. $L_X(T) = XT$ and $R_Y(T) = TY$. Since L_X and R_Y commute, we have

$$e^{L_X + R_Y}(T) = e^X T e^Y.$$

More concisely, if f(x) and g(x) are two infinitely many times differentiable, then we have

$$f(L_X)g(R_Y)(T) = f(X)Tg(Y).$$

Let X be selfadjoint member of $\mathbb{B}(\mathcal{H})$ and let $A \in \mathbb{B}(\mathcal{H})$ be arbitrary. Then unitary invariance of the operator norm leads to the elementary inequality

$$||A \pm iXA|| \ge ||A||.$$

The above inequality may be written as

$$||(I \pm iL_X)A|| \ge ||A||.$$
 (1.1)

In 1995, Bhatia and Davis [6] proved a difference version of the Heinz inequality

$$|||A^{\alpha}XB^{1-\alpha} - A^{1-\alpha}XB^{\alpha}||| \le |2\alpha - 1||||AX - XB|||, \qquad (0 \le \alpha \le 1)$$
 (1.2)

for $A, B \in \mathbb{B}(\mathcal{H})_+$ and $X \in \mathcal{I}$.

Later in 1998, Kosaki [18] proved several related inequalities using Poisson integral and Fourier transform. Among those a few are matrix version of the well-known inequalities $|\sin x| \le |x|$, $|x| \le |\sinh x|$ and geometric-logarithmic mean inequalities.

In 2005, Jocić [13] proved Cauchy–Schwarz norm inequalities and several other related non-trivial inequalities using Gel'fand's integration techniques.

Then, in 2014, Kapil and Singh [15] proved that the function,

$$f(\alpha) = |||A^{\alpha}XB^{1-\alpha} - A^{1-\alpha}XB^{\alpha}|||$$

is monotonically decreasing for $\alpha \in [0, 1/2]$ and is monotonically increasing for $\alpha \in [1/2, 1]$, see [15, p. 491]. More precisely, it is proved that $f(\alpha)$ is a convex function on [0, 1]. For more such inequalities the reader may see [3,5,12,16–18,20,23,24].

To prove these and related inequalities, contractive maps on \mathcal{I} play a key role. This viewpoint has been taken by some other authors. For instance, the authors in [8,9,11,18] proved positive definiteness of the functions such as $\frac{\cosh(\alpha x)}{\cosh x}$, $\frac{\sinh(\alpha x)}{\sinh x}$, for $0 < \alpha < 1$,

Download English Version:

https://daneshyari.com/en/article/4598425

Download Persian Version:

https://daneshyari.com/article/4598425

<u>Daneshyari.com</u>