Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

Lieb's concavity theorem, matrix geometric means, and semidefinite optimization

LINEAR

lications

Hamza Fawzi^{a,*}, James Saunderson^b

 ^a Department of Applied Mathematics and Theoretical Physics, University of Cambridge, United Kingdom
^b Department of Electrical and Computer Systems Engineering, Monash University, VIC 3800, Australia

ARTICLE INFO

Article history: Received 23 March 2016 Accepted 13 October 2016 Available online 17 October 2016 Submitted by B. Meini

MSC: 90C22 47A63 81P45

Keywords: Matrix convexity Semidefinite optimization Linear matrix inequalities Lieb's concavity theorem Matrix geometric means

ABSTRACT

A famous result of Lieb establishes that the map $(A, B) \mapsto$ tr $[K^*A^{1-t}KB^t]$ is jointly concave in the pair (A, B) of positive definite matrices, where K is a fixed matrix and $t \in [0, 1]$. In this paper we show that Lieb's function admits an explicit semidefinite programming formulation for any rational $t \in [0, 1]$. Our construction makes use of a semidefinite formulation of weighted matrix geometric means. We provide an implementation of our constructions in Matlab.

© 2016 Elsevier Inc. All rights reserved.

E-mail addresses: h.fawzi@damtp.cam.ac.uk (H. Fawzi), james.saunderson@monash.edu (J. Saunderson).

^{*} Corresponding author.

1. Introduction

In 1973 Lieb [19] proved the following fundamental theorem.

Theorem 1 (Lieb). Let K be a fixed matrix in $\mathbb{C}^{n \times m}$. Then for any $t \in [0,1]$, the map

$$(A,B) \mapsto \operatorname{tr}\left[K^* A^{1-t} K B^t\right] \tag{1}$$

is jointly concave in (A, B) where A and B are respectively $n \times n$ and $m \times m$ Hermitian positive definite matrices.

This theorem plays a fundamental role in quantum information theory and was used for example to establish convexity of the quantum relative entropy as well as strong subadditivity [21]. In this paper we give an explicit representation of Lieb's function using semidefinite programming when t is a rational number. More precisely we prove:

Theorem 2. Let K be a fixed matrix in $\mathbb{C}^{n \times m}$ and let t = p/q be any rational number in [0, 1]. Then the convex set

$$\left\{ (A, B, \tau) : \operatorname{tr} \left[K^* A^{1-t} K B^t \right] \ge \tau \right\}$$

has a semidefinite programming representation with at most $2\lfloor \log_2 q \rfloor + 3$ linear matrix inequalities of size at most $2nm \times 2nm$.

Semidefinite programming is a class of convex optimization problems that can be solved in polynomial-time and that is supported by many existing numerical software packages. Having a semidefinite programming formulation of a function allows us to combine it with a wide family of other semidefinite representable functions and constraints, and solve the resulting problem to global optimality. In fact we have implemented our constructions in the Matlab-based modeling language CVX [14] and we are making them available online on the webpage

http://www.damtp.cam.ac.uk/user/hf323/lieb_cvx.html.

Matrix geometric means. Our proof of Theorem 2 relies crucially on the notion of matrix geometric mean. Given $t \in [0, 1]$ and positive definite matrices A and B, the t-weighted matrix geometric mean of A and B denoted interchangeably by $G_t(A, B)$ or $A \#_t B$ is defined as:

$$G_t(A,B) = A \#_t B := A^{1/2} \left(A^{-1/2} B A^{-1/2} \right)^t A^{1/2}.$$
 (2)

Note that when A and B are scalars (or commuting matrices) this formula reduces to the simpler expression $A^{1-t}B^t$. Equation (2) constitutes a generalization of the geometric

Download English Version:

https://daneshyari.com/en/article/4598429

Download Persian Version:

https://daneshyari.com/article/4598429

Daneshyari.com