

2-Walk-regular graphs with a small number of vertices compared to the valency

Zhi Qiao^a, Jack H. Koolen^{b,c}, Jongyook Park^{d,*}

 ^a College of Mathematics and Software Science, Sichuan Normal University, Chengdu, 610068, Sichuan, PR China
^b School of Mathematical Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, Anhui, PR China

 ^c Wu Wen-Tsun Key Laboratory of Mathematics, Chinese Academy of Sciences, 96 Jinzhai Road, Hefei, 230026, Anhui, PR China
^d School of Computational Sciences, Korea Institute for Advanced Study, Seoul, 02455, Republic of Korea

ARTICLE INFO

Article history: Received 8 June 2016 Accepted 29 July 2016 Available online 3 August 2016 Submitted by R. Brualdi

MSC: 05E30 05C50

Keywords:

Distance-regular graphs t-walk-regular graphs Group divisible designs Dual property

ABSTRACT

In 2013, it was shown that, for a given real number $\alpha > 2$, there are only finitely many distance-regular graphs Γ with valency k and diameter $D \geq 3$ having at most αk vertices, except for the following two cases: (i) D = 3 and Γ is imprimitive; (ii) D = 4 and Γ is antipodal and bipartite. In this paper, we will generalize this result to 2-walk-regular graphs. In this case, also incidence graphs of certain group divisible designs appear.

© 2016 Elsevier Inc. All rights reserved.

^{*} Corresponding author.

E-mail addresses: zhiqiao@sicnu.edu.cn (Z. Qiao), koolen@ustc.edu.cn (J.H. Koolen), jongyook@hanmail.net (J. Park).

1. Introduction

For unexplained terms, see the next section.

In 2013, Koolen and Park [11] studied distance-regular graphs with a small number of vertices relative to their valency and they have shown the following result.

Theorem 1.1. (Cf. [11, Theorem 1]) Let $\alpha > 2$ be a real number. Then there are finitely many distance-regular graphs Γ with valency k, diameter $D \ge 3$ and v vertices satisfying $v \le \alpha k$ unless one of the following holds:

- i) D = 3 and Γ is imprimitive,
- ii) D = 4 and Γ is antipodal and bipartite.

Note that a *t*-walk-regular graph is a common generalization of distance-regular graphs on the one hand and *t*-arc-transitive graphs on the other hand. We focus on the case where t = 2 because *s*-walk-regular graphs are *t*-walk-regular if $s \ge t$ and many properties of distance-regular graphs can be generalized to 2-walk-regular graphs. In this paper we use some results (Lemma 2.2 and Lemma 2.7) that hold for 2-walk-regular graphs but are not true in general for 1-walk-regular graphs as shown in [5]. We will generalize Theorem 1.1 to the class of 2-walk-regular graphs as follows.

Theorem 1.2. Let $\alpha > 2$ be a real number and let Γ be a 2-walk-regular graph with valency k, diameter $D \ge 3$ and v vertices. If $v \le \alpha k$, then one of the following holds:

i) $k \leq C(\alpha)$, and hence $v \leq C(\alpha)\alpha$, where $C(\alpha) = \frac{(\alpha^{11}-1)(\alpha^{11}+2)}{2}$;

ii) D = 3 and Γ is an imprimitive distance-regular graph;

iii) D = 4 and Γ is a bipartite antipodal distance-regular graph;

iv) D = 4 and Γ is the incidence graph of an $(n, m; k; 0, \lambda_2)$ -group divisible design with the dual property, where v = 2nm.

Note that there are infinitely many 2-walk-regular graphs with v = 4k + 4 that are not distance-regular, satisfying iv) (for example, see Remark 3.2). And this result shows that although the class of 2-walk-regular graphs is much larger than the class of distanceregular graphs, 2-walk-regular graphs behave fairly similar as distance-regular graphs. But the proof of Theorem 1.2 needs some more ideas, as for 2-walk-regular graphs you loose quite a bit of the combinatorial properties of distance-regular graphs.

We will also show that a proper 2-walk-regular graph with valency k has at least 3k + 2 vertices. Moreover, if it is bipartite, then it has at least 4k + 2 vertices. We will also give an infinite family of bipartite proper 2-walk-regular graphs with valency k and 4k + 4 vertices. Park [13] gave the classification of primitive distance-regular graphs with at most 3k + 1 vertices. We do not know of any proper 2-walk-regular graph with valency k and at most 4k + 3 vertices.

Download English Version:

https://daneshyari.com/en/article/4598439

Download Persian Version:

https://daneshyari.com/article/4598439

Daneshyari.com