Complementarity properties of singular M-matrices

I. Jeyaraman ${ }^{\text {a }}$, K.C. Sivakumar ${ }^{\text {b,* }}$
a Department of Mathematical and Computational Sciences, National Institute of Technology Karnataka, Surathkal - 575 025, India
b Department of Mathematics, Indian Institute of Technology Madras, Chennai 600 036, India

A R T I C L E I N F O

Article history:

Received 24 February 2016
Accepted 1 August 2016
Available online 5 August 2016
Submitted by R. Brualdi

MSC:

15A09
90C33

Keywords:
M-matrix with "property c"
Group inverse
Range monotonicity
Strictly range semimonotonicity
Range column sufficiency
$P_{\# \text {-matrix }}$
Linear complementarity problem

Abstract

For a matrix A whose off-diagonal entries are nonpositive, its nonnegative invertibility (namely, that A is an invertible M-matrix) is equivalent to A being a P-matrix, which is necessary and sufficient for the unique solvability of the linear complementarity problem defined by A. This, in turn, is equivalent to the statement that A is strictly semimonotone. In this paper, an analogue of this result is proved for singular symmetric Z-matrices. This is achieved by replacing the inverse of A by the group generalized inverse and by introducing the matrix classes of strictly range semimonotonicity and range column sufficiency. A recently proposed idea of $P_{\#}$-matrices plays a pivotal role. Some interconnections between these matrix classes are also obtained.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

$\mathbb{R}^{n \times n}$ denotes the space of all real square matrices of order n and \mathbb{R}^{n} denotes the real Euclidean space of real vectors with n coordinates. For $x \in \mathbb{R}^{n}$, we write $x \geq 0$ to denote

[^0]that all the coordinates of x are nonnegative. This is written as $x \in \mathbb{R}_{+}^{n}$, where \mathbb{R}_{+}^{n} is the nonnegative orthant of $\mathbb{R}^{n} . x>0$ signifies the fact that all the coordinates of x are positive. A real matrix B is said to be nonnegative if all its entries are nonnegative. This is denoted by $B \geq 0$. One of the central objects of interest in this work is the concept of a linear complementarity problem, which we discuss next. For $x, y \in \mathbb{R}^{n}$, we use $\langle x, y\rangle$ to denote the inner product $x^{T} y$ and $x \circ y$ to denote the Hadamard entrywise product of x and y. Let $A \in \mathbb{R}^{n \times n}$ and $q \in \mathbb{R}^{n}$. The linear complementarity problem $\operatorname{LCP}(A, q)$ is to determine if there exists $x \in \mathbb{R}^{n}$ such that $x \geq 0, y=A x+q \geq 0$ and $\langle y, x\rangle=0$. If such a vector x exists, then $L C P(A, q)$ is said to have a solution. $S O L(A, q)$ denotes the set of all solutions of $\operatorname{LCP}(A, q)$. Various classes of matrices have been introduced to study the existence and uniqueness of solutions of $\operatorname{LCP}(A, q)$. Let us recall some of the relevant ones. A real square matrix A is called a P-matrix if all its principal minors are positive. It is well known that A is a P-matrix if and only if the implication
$$
x \circ A x \leq 0 \Longrightarrow x=0
$$
holds [3]. A famous result in the theory of linear complementarity problems states that $\operatorname{LCP}(A, q)$ has a unique solution for all $q \in \mathbb{R}^{n}$ if and only if A is a P-matrix [3]. Let us consider the second class of matrices. A real square matrix A is said to be a strictly semimonotone matrix if
$$
x \geq 0 \text { and } x \circ A x \leq 0 \Longrightarrow x=0 .
$$

It is well known that A is a strictly semimonotone matrix if and only if $\operatorname{LCP}(A, q)$ has a unique solution for all $q \in \mathbb{R}_{+}^{n}$ (Theorem 3.9.11) [3]. Any P-matrix is a strictly semimonotone matrix, while the converse could be shown to be false. However, these two classes coincide for a matrix class which we consider next. A is called a Z-matrix, if all its off-diagonal entries are nonpositive. Note that if A is a Z-matrix, then $A=s I-B$, for some $s \in \mathbb{R}$ with $s>0$ and $B \geq 0$. A Z-matrix A is called an M-matrix if in the representation as above, one also has $s \geq \rho(B)$, where $\rho(B)$ denotes the spectral radius of B. For a Z-matrix A to be a P-matrix, more than fifty characterizations are proved in the literature. We refer to the excellent book [2], for these. In what follows, we list out the conditions that are pertinent to the discussion here.

Theorem 1.1. [2, 12] Let $A \in \mathbb{R}^{n \times n}$ be a Z-matrix. Then the following statements are equivalent:
(a) A is a P-matrix.
(b) A^{-1} exists and $A^{-1} \geq 0$.
(c) A is an invertible M-matrix.
(d) A is a strictly semimonotone matrix.

https://daneshyari.com/en/article/4598441

Download Persian Version:

https://daneshyari.com/article/4598441

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: i_jeyaraman@yahoo.co.in (I. Jeyaraman), kcskumar@iitm.ac.in (K.C. Sivakumar).

