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Let l, m1, m2, . . .ml ≥ 2 be positive integers. We describe 
some linear maps φ : Mm1...ml (F) → Mm1...ml (F) satisfying

det(φ(A1 ⊗ . . .⊗Al)) = det(A1 ⊗ . . .⊗Al),

for all Ak ∈ Mmk (F), k = 1, . . . , l.
© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Let Mn(F) be the linear space of n-square matrices over a field F. For A ∈ Mm(F)
and B ∈ Mn(F), we denote by A ⊗ B ∈ Mmn(F) their tensor product (also known as 
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the Kronecker product). Throughout this note, On denotes the n by n null matrix, and 
E

(n)
i,j denotes the n by n matrix whose all entries are equal to zero except for the (i, j)-th 

entry which is one. The rank of a matrix A is denoted by ρ(A).
In a wide variety of pure or applied studies the tensor product of matrices plays a 

fundamental role. For instance, in quantum physics, the quantum states of a system with 
n physical states are represented as n by n positive semi-definite matrices with trace one, 
and if A and B are two states of two quantum system, then A ⊗ B describes the joint 
(bipartite) system. Recent studies in quantum information theory require the description 
of linear maps that preserve certain properties of tensor product of matrices (see [3]). 
Therefore, many papers have been appearing in the literature with the characterization 
of linear maps that preserve certain properties of the tensor product of matrices, such as 
norms, the rank, the spectrum, the spectral radius, the numerical radius or idempotency
(see [1,2,4–7]).

Let l, m1, m2, . . .ml ≥ 2 be positive integers. Our main goal is to describe linear maps 
φ : Mm1...ml

(F) → Mm1...ml
(F) which satisfy

det(φ(A1 ⊗ . . .⊗Al)) = det(A1 ⊗ . . .⊗Al), (1)

for all Ak ∈ Mmk
(F), k = 1, . . . , l, with the assumption that φ do not increase the rank 

of any matrix A1 ⊗ . . .⊗Al.

2. Main result and proofs

We call a linear map π on Mm1...ml
(F) canonical, if

π(A1 ⊗ . . .⊗Al) = ψ1(A1) ⊗ . . .⊗ ψl(Al),

for all Ak ∈ Mmk
(F), k = 1, . . . , l, where ψk : Mmk

(F) → Mmk
(F), k = 1, . . . , l, is either 

the identity map, ψk(X) = X or the transposition map ψk(X) = XT . In this case, we 
write π = ψ1 ⊗ . . .⊗ ψl.

Our main theorem reads as follows:

Theorem 1. Let φ : Mm1...ml
(F) → Mm1...ml

(F) be a linear map which does not increase 
the rank of any matrix A1 ⊗ . . . ⊗ Al ∈ Mm1...ml

(F). Then, φ satisfies (1) if and only 
if there are invertible matrices U, V ∈ Mm1...ml

(F) with det(UV ) = 1, and a canonical 
map π on Mm1...ml

(F) such that

φ(A1 ⊗ . . .⊗Al) = Uπ(A1 ⊗ . . .⊗Al)V,

for all Ak ∈ Mmk
(F), k = 1, . . . , l.

For proving our main results we will need some auxiliary results.
In a recent work, [6], Lim described the linear maps that preserve the rank of the 

tensor product of matrices over an arbitrary field F:
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