# Rank nonincreasing linear maps preserving the determinant of tensor product of matrices ${ }^{\text {th }}$ 

M. Antónia Duffner ${ }^{\text {a,* }}$, Henrique F. da Cruz ${ }^{\text {b }}$<br>${ }^{\text {a }}$ Faculdade de Ciências da Universidade de Lisboa, Bloco C6, Piso 2, Campo<br>Grande, 1700-016 Lisboa, Portugal<br>${ }^{\text {b }}$ Departamento de Matemática da Universidade da Beira Interior, Rua Marquês D'Avila e Bolama, 6201-001 Covilhã, Portugal

## A R T I C L E I N F O

## Article history:

Received 30 May 2016
Accepted 16 August 2016
Available online 22 August 2016
Submitted by C.-K. Li

## MSC:

15A03
15A69
Keywords:
Linear preserver problems
Determinant
Tensor product

## A B S T R A C T

Let $l, m_{1}, m_{2}, \ldots m_{l} \geq 2$ be positive integers. We describe some linear maps $\phi: M_{m_{1} \ldots m_{l}}(\mathbb{F}) \rightarrow M_{m_{1} \ldots m_{l}}(\mathbb{F})$ satisfying

$$
\operatorname{det}\left(\phi\left(A_{1} \otimes \ldots \otimes A_{l}\right)\right)=\operatorname{det}\left(A_{1} \otimes \ldots \otimes A_{l}\right)
$$

for all $A_{k} \in M_{m_{k}}(\mathbb{F}), k=1, \ldots, l$.
© 2016 Elsevier Inc. All rights reserved.

## 1. Introduction

Let $M_{n}(\mathbb{F})$ be the linear space of $n$-square matrices over a field $\mathbb{F}$. For $A \in M_{m}(\mathbb{F})$ and $B \in M_{n}(\mathbb{F})$, we denote by $A \otimes B \in M_{m n}(\mathbb{F})$ their tensor product (also known as

[^0]the Kronecker product). Throughout this note, $O_{n}$ denotes the $n$ by $n$ null matrix, and $E_{i, j}^{(n)}$ denotes the $n$ by $n$ matrix whose all entries are equal to zero except for the $(i, j)$-th entry which is one. The rank of a matrix $A$ is denoted by $\rho(A)$.

In a wide variety of pure or applied studies the tensor product of matrices plays a fundamental role. For instance, in quantum physics, the quantum states of a system with $n$ physical states are represented as $n$ by $n$ positive semi-definite matrices with trace one, and if $A$ and $B$ are two states of two quantum system, then $A \otimes B$ describes the joint (bipartite) system. Recent studies in quantum information theory require the description of linear maps that preserve certain properties of tensor product of matrices (see [3]). Therefore, many papers have been appearing in the literature with the characterization of linear maps that preserve certain properties of the tensor product of matrices, such as norms, the rank, the spectrum, the spectral radius, the numerical radius or idempotency (see $[1,2,4-7]$ ).

Let $l, m_{1}, m_{2}, \ldots m_{l} \geq 2$ be positive integers. Our main goal is to describe linear maps $\phi: M_{m_{1} \ldots m_{l}}(\mathbb{F}) \rightarrow M_{m_{1} \ldots m_{l}}(\mathbb{F})$ which satisfy

$$
\begin{equation*}
\operatorname{det}\left(\phi\left(A_{1} \otimes \ldots \otimes A_{l}\right)\right)=\operatorname{det}\left(A_{1} \otimes \ldots \otimes A_{l}\right) \tag{1}
\end{equation*}
$$

for all $A_{k} \in M_{m_{k}}(\mathbb{F}), k=1, \ldots, l$, with the assumption that $\phi$ do not increase the rank of any matrix $A_{1} \otimes \ldots \otimes A_{l}$.

## 2. Main result and proofs

We call a linear map $\pi$ on $M_{m_{1} \ldots m_{l}}(\mathbb{F})$ canonical, if

$$
\pi\left(A_{1} \otimes \ldots \otimes A_{l}\right)=\psi_{1}\left(A_{1}\right) \otimes \ldots \otimes \psi_{l}\left(A_{l}\right)
$$

for all $A_{k} \in M_{m_{k}}(\mathbb{F}), k=1, \ldots, l$, where $\psi_{k}: M_{m_{k}}(\mathbb{F}) \rightarrow M_{m_{k}}(\mathbb{F}), k=1, \ldots, l$, is either the identity map, $\psi_{k}(X)=X$ or the transposition $\operatorname{map} \psi_{k}(X)=X^{T}$. In this case, we write $\pi=\psi_{1} \otimes \ldots \otimes \psi_{l}$.

Our main theorem reads as follows:
Theorem 1. Let $\phi: M_{m_{1} \ldots m_{l}}(\mathbb{F}) \rightarrow M_{m_{1} \ldots m_{l}}(\mathbb{F})$ be a linear map which does not increase the rank of any matrix $A_{1} \otimes \ldots \otimes A_{l} \in M_{m_{1} \ldots m_{l}}(\mathbb{F})$. Then, $\phi$ satisfies (1) if and only if there are invertible matrices $U, V \in M_{m_{1} \ldots m_{l}}(\mathbb{F})$ with $\operatorname{det}(U V)=1$, and a canonical map $\pi$ on $M_{m_{1} \ldots m_{l}}(\mathbb{F})$ such that

$$
\phi\left(A_{1} \otimes \ldots \otimes A_{l}\right)=U \pi\left(A_{1} \otimes \ldots \otimes A_{l}\right) V
$$

for all $A_{k} \in M_{m_{k}}(\mathbb{F}), k=1, \ldots, l$.
For proving our main results we will need some auxiliary results.
In a recent work, [6], Lim described the linear maps that preserve the rank of the tensor product of matrices over an arbitrary field $\mathbb{F}$ :

# https://daneshyari.com/en/article/4598450 

Download Persian Version:
https://daneshyari.com/article/4598450

## Daneshyari.com


[^0]:    This work was partially supported by national funds of FCT-Foundation for Science and Technology under the project UID/MAT/00212/2013.

    * Corresponding author.

    E-mail addresses: mamonteiro@cii.fc.ul.pt (M.A. Duffner), hcruz@ubi.pt (H.F. da Cruz).

