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1. Introduction

As semirings allow for more general and joint solutions to various problems, while
reducing the time complexity of existing algorithms, they are a very active research area
in computer science. This algebraic structure has properties that are quite different from
other classical algebraic structures as groups, rings and fields. Thus, over last decades,
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many developments in mathematics have been devoted to the research of semirings.
A particular class of canonically ordered semirings (also called dioids) come rather nat-
urally into play in connection with algebraic models for many problems arising from
computer science, such as scheduling, network analysis, pathfinding problems in graphs,
hierarchical clustering, parsing,...

Nilpotent matrices play a crucial role when studying matrices over semirings. In this
work, we continue studying the simultaneous nilpotence of a set of matrices. The defini-
tion of the simultaneous nilpotence originates in the study of infinite products of matrices
and their convergence to the zero matrix.

A semiring is a set S equipped with binary operations + and - such that (S,+)
is a commutative monoid with identity element 0 and (S,-) is a monoid with identity
element 1. In addition, operations + and - are connected by distributivity and 0 annihi-
lates S. For a semiring S we denote by N'(S) C S the set of all nilpotent elements in S
and by Z(S) the set of zero-divisors in S.

A semiring is commutative if ab = ba for all a,b € S. A semiring S is antinegative
(sometimes also called a zerosumfree semiring or an antiring), if the condition a +b =0
implies that a = b =0 for all a,b € S.

For example, Zy and Boolean algebra B = ({0,1},V,A) are the smallest nontrivial
semirings, with the difference that B is an antinegative semiring, while Zs is actually a
ring. The set of nonnegative integers with the usual operations of addition and multipli-
cation is a commutative antinegative semiring. Distributive lattices and fuzzy algebras
are commutative antinegative semirings.

The set M, (S) of n x n matrices over a semiring S is a semiring as well. Let E; ;
denote the zero-one matrix with the only nonzero element in the (i, j)-th position. For
a set of matrices R C M, (S) we denote the set of products of k& matrices by

RE = {A1Ay... Ay; A € R).

For 1 <i < j <k, the product A;A;+1...A; is called a subproduct of A; Ay ... Ap. We
say that the set of matrices R is simultaneously nilpotent if R? = {0} for some positive
integer p. By h(R) we denote the smallest integer p such that R? = {0} and call it the
simultaneously nilpotent index.

In [1] the first properties of the simultaneously nilpotent set of fuzzy matrices are
given. In [2] the authors characterize the simultaneous nilpotence of fuzzy matrices and
extend some of the results to the bounded distributive lattices. Further properties of
nilpotent fuzzy matrices were investigated in [3]. In [5] the authors give some sufficient
and some necessary conditions on elements of R C M,,(.S) for an antinegative semiring S,
that cause R to be simultaneously nilpotent. Tan [4] proves some characterizations of
simultaneously nilpotent matrices over commutative antirings with additional assump-
tion of S being without zero-divisors, A(S) being simultaneously nilpotent, or when

N(S) = Z(S).
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