Recovery of eigenvectors of rational matrix functions from Fiedler-like linearizations

Rafikul Alam*, Namita Behera
Department of Mathematics, IIT Guwahati, Guwahati 781039, India

A R T I C L E I N F O

Article history:

Received 10 June 2016
Accepted 8 September 2016
Available online 12 September 2016
Submitted by F. Dopico

MSC:

65F15
15A57
15A18
65F35
Keywords:
Rational matrix function
Zeros
Poles
Matrix polynomial
Eigenvalue
Eigenvector
Minimal realization
Matrix pencil
Linearization
Fiedler pencil

Abstract

Linearization is a standard method often used when dealing with matrix polynomials. Recently, the concept of linearization has been extended to rational matrix functions and Fiedler-like matrix pencils for rational matrix functions have been constructed. A linearization $\mathbb{L}(\lambda)$ of a rational matrix function $G(\lambda)$ does not necessarily guarantee a simple way of recovering eigenvectors of $G(\lambda)$ from those of $\mathbb{L}(\lambda)$. We show that Fiedler-like pencils of $G(\lambda)$ allow an easy operation free recovery of eigenvectors of $G(\lambda)$, that is, eigenvectors of $G(\lambda)$ are recovered from eigenvectors of Fiedler-like pencils of $G(\lambda)$ without performing any arithmetic operations. We also consider Fiedler-like pencils of the Rosenbrock system polynomial $\mathcal{S}(\lambda)$ associated with an LTI system Σ in statespace form (SSF) and show that the Fiedler-like pencils allow operation free recovery of eigenvectors of $\mathcal{S}(\lambda)$. The eigenvectors of $\mathcal{S}(\lambda)$ are the invariant zero directions of the LTI system Σ.

© 2016 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

Let $P(\lambda)$ be an $n \times n$ matrix polynomial (regular or singular) of degree m. Then an $m n \times m n$ matrix pencil $L(\lambda):=A+\lambda B$ is said to be a linearization $[5,7]$ of $P(\lambda)$ if there are $m n \times m n$ unimodular matrix polynomials $U(\lambda)$ and $V(\lambda)$ such that $U(\lambda) L(\lambda) V(\lambda)=\operatorname{diag}\left(I_{(m-1) n}, P(\lambda)\right)$ for all $\lambda \in \mathbb{C}$, where I_{k} denotes the $k \times k$ identity matrix. Linearization is a standard technique often used when dealing with matrix polynomials especially for solving polynomial eigenvalue problems, see [5,7,2,4] and references therein.

Zeros (eigenvalues) and poles of rational matrix functions play an important role in Linear Systems Theory $[6,9,11]$ as well as in many other applications such as in acoustic emissions of high speed trains, calculations of quantum dots, free vibration of plates with elastically attached masses, vibrations of fluid-solid structures, to name only a few, see $[8,12,13,10]$.

Linearizations of rational matrix functions have been introduced recently in [1,3] via matrix-fraction descriptions (MFD) of rational matrix functions. Let $G(\lambda)$ be an $n \times n$ rational matrix function and let $G(\lambda)=N(\lambda) D(\lambda)^{-1}$ be a right coprime MFD of $G(\lambda)$, where $N(\lambda)$ and $D(\lambda)$ are matrix polynomials with $D(\lambda)$ being regular. Then the zero structure of $G(\lambda)$ is the same as the eigenstructure of $N(\lambda)$ and the pole structure of $G(\lambda)$ is the same as the eigenstructure of $D(\lambda)$, see [6].

Definition 1.1 (Linearization, [1]). Let $G(\lambda)$ be an $n \times n$ rational matrix function (regular or singular) and let $G(\lambda)=N(\lambda) D(\lambda)^{-1}$ be a right coprime MFD of $G(\lambda)$. Set $r:=$ $\operatorname{deg}(\operatorname{det}(D(\lambda)))$. Then a matrix pencil $\mathbb{L}(\lambda)$ of the form

$$
\mathbb{L}(\lambda):=\left[\begin{array}{c|c}
X+\lambda Y & \mathcal{C} \tag{1.1}\\
\hline \mathcal{B} & A+\lambda E
\end{array}\right]
$$

is said to be a linearization of $G(\lambda)$ provided that $\mathbb{L}(\lambda)$ is a linearization of $N(\lambda)$ and $A+\lambda E$ is a linearization of $D(\lambda)$, where E is an $r \times r$ nonsingular matrix and the pencil $X+\lambda Y$ and the matrices \mathcal{B} and \mathcal{C} are of appropriate dimensions.

Thus the zeros and the poles of $G(\lambda)$ can be computed by solving the twin generalized eigenvalue problems $\mathbb{L}(\lambda) u=0$ and $(A+\lambda E) v=0$. Our main aim in this paper is to recover left and right eigenvectors of $G(\lambda)$ from those of $\mathbb{L}(\lambda)$ when $G(\lambda)$ is regular. The nonzero vectors u and v are said to be left and right eigenvectors of $G(\lambda)$ corresponding to an eigenvalue λ provided that $u^{T} G(\lambda)=0$ and $G(\lambda) v=0$.

The Fiedler-like pencils of $G(\lambda)$ have been constructed in [1,3] by considering a realization [6] of $G(\lambda)$ of the form

$$
\begin{equation*}
G(\lambda)=\sum_{j=0}^{m} \lambda^{j} A_{j}+C(\lambda E-A)^{-1} B=: P(\lambda)+C(\lambda E-A)^{-1} B \tag{1.2}
\end{equation*}
$$

https://daneshyari.com/en/article/4598462

Download Persian Version:
https://daneshyari.com/article/4598462

Daneshyari.com

[^0]: * Corresponding author. Fax: +91 361 2690762; +91 3612582649.

 E-mail addresses: rafik@iitg.ernet.in, rafikul68@gmail.com (R. Alam), niku.namita@gmail.com (N. Behera).

