Linear Algebra and its Applications 510 (2016) 373-394

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

Recovery of eigenvectors of rational matrix functions from Fiedler-like linearizations

LINEAR ALGEBRA

Applications

Rafikul Alam^{*}, Namita Behera

Department of Mathematics, IIT Guwahati, Guwahati 781039, India

A R T I C L E I N F O

Article history: Received 10 June 2016 Accepted 8 September 2016 Available online 12 September 2016 Submitted by F. Dopico

MSC: 65F15 15A57 15A18 65F35

Keywords: Rational matrix function Zeros Poles Matrix polynomial Eigenvalue Eigenvector Minimal realization Matrix pencil Linearization Fiedler pencil

ABSTRACT

Linearization is a standard method often used when dealing with matrix polynomials. Recently, the concept of linearization has been extended to rational matrix functions and Fiedler-like matrix pencils for rational matrix functions have been constructed. A linearization $\mathbb{L}(\lambda)$ of a rational matrix function $G(\lambda)$ does not necessarily guarantee a simple way of recovering eigenvectors of $G(\lambda)$ from those of $\mathbb{L}(\lambda)$. We show that Fiedler-like pencils of $G(\lambda)$ allow an easy operation free recovery of eigenvectors of $G(\lambda)$, that is, eigenvectors of $G(\lambda)$ are recovered from eigenvectors of Fiedler-like pencils of $G(\lambda)$ without performing any arithmetic operations. We also consider Fiedler-like pencils of the Rosenbrock system polynomial $\mathcal{S}(\lambda)$ associated with an LTI system Σ in statespace form (SSF) and show that the Fiedler-like pencils allow operation free recovery of eigenvectors of $\mathcal{S}(\lambda)$. The eigenvectors of $\mathcal{S}(\lambda)$ are the invariant zero directions of the LTI system Σ .

© 2016 Elsevier Inc. All rights reserved.

^{*} Corresponding author. Fax: +91 361 2690762; +91 361 2582649.

E-mail addresses: rafik@iitg.ernet.in, rafikul68@gmail.com (R. Alam), niku.namita@gmail.com (N. Behera).

1. Introduction

Let $P(\lambda)$ be an $n \times n$ matrix polynomial (regular or singular) of degree m. Then an $mn \times mn$ matrix pencil $L(\lambda) := A + \lambda B$ is said to be a *linearization* [5,7] of $P(\lambda)$ if there are $mn \times mn$ unimodular matrix polynomials $U(\lambda)$ and $V(\lambda)$ such that $U(\lambda)L(\lambda)V(\lambda) = \text{diag}(I_{(m-1)n}, P(\lambda))$ for all $\lambda \in \mathbb{C}$, where I_k denotes the $k \times k$ identity matrix. Linearization is a standard technique often used when dealing with matrix polynomials especially for solving polynomial eigenvalue problems, see [5,7,2,4] and references therein.

Zeros (eigenvalues) and poles of rational matrix functions play an important role in Linear Systems Theory [6,9,11] as well as in many other applications such as in acoustic emissions of high speed trains, calculations of quantum dots, free vibration of plates with elastically attached masses, vibrations of fluid-solid structures, to name only a few, see [8,12,13,10].

Linearizations of rational matrix functions have been introduced recently in [1,3] via matrix-fraction descriptions (MFD) of rational matrix functions. Let $G(\lambda)$ be an $n \times n$ rational matrix function and let $G(\lambda) = N(\lambda)D(\lambda)^{-1}$ be a right coprime MFD of $G(\lambda)$, where $N(\lambda)$ and $D(\lambda)$ are matrix polynomials with $D(\lambda)$ being regular. Then the zero structure of $G(\lambda)$ is the same as the eigenstructure of $N(\lambda)$ and the pole structure of $G(\lambda)$ is the same as the eigenstructure of $D(\lambda)$, see [6].

Definition 1.1 (Linearization, [1]). Let $G(\lambda)$ be an $n \times n$ rational matrix function (regular or singular) and let $G(\lambda) = N(\lambda)D(\lambda)^{-1}$ be a right coprime MFD of $G(\lambda)$. Set $r := \deg(\det(D(\lambda)))$. Then a matrix pencil $\mathbb{L}(\lambda)$ of the form

$$\mathbb{L}(\lambda) := \begin{bmatrix} X + \lambda Y & \mathcal{C} \\ \hline \mathcal{B} & A + \lambda E \end{bmatrix}$$
(1.1)

is said to be a linearization of $G(\lambda)$ provided that $\mathbb{L}(\lambda)$ is a linearization of $N(\lambda)$ and $A + \lambda E$ is a linearization of $D(\lambda)$, where E is an $r \times r$ nonsingular matrix and the pencil $X + \lambda Y$ and the matrices \mathcal{B} and \mathcal{C} are of appropriate dimensions.

Thus the zeros and the poles of $G(\lambda)$ can be computed by solving the twin generalized eigenvalue problems $\mathbb{L}(\lambda)u = 0$ and $(A + \lambda E)v = 0$. Our main aim in this paper is to recover left and right eigenvectors of $G(\lambda)$ from those of $\mathbb{L}(\lambda)$ when $G(\lambda)$ is regular. The nonzero vectors u and v are said to be left and right eigenvectors of $G(\lambda)$ corresponding to an eigenvalue λ provided that $u^T G(\lambda) = 0$ and $G(\lambda)v = 0$.

The Fiedler-like pencils of $G(\lambda)$ have been constructed in [1,3] by considering a *realization* [6] of $G(\lambda)$ of the form

$$G(\lambda) = \sum_{j=0}^{m} \lambda^{j} A_{j} + C(\lambda E - A)^{-1} B =: P(\lambda) + C(\lambda E - A)^{-1} B, \qquad (1.2)$$

Download English Version:

https://daneshyari.com/en/article/4598462

Download Persian Version:

https://daneshyari.com/article/4598462

Daneshyari.com