Proof of a conjecture on 'plateaux' phenomenon of graph Laplacian eigenvalues

Ebrahim Ghorbani ${ }^{\text {a,b,* }}$
${ }^{\text {a }}$ Department of Mathematics, K.N. Toosi University of Technology, P.O. Box 16315-1618, Tehran, Iran
${ }^{\mathrm{b}}$ School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5746, Tehran, Iran

A R T I C L E I N F O

Article history:

Received 1 January 2016
Accepted 26 May 2016
Available online 30 May 2016
Submitted by R. Brualdi

MSC:

05C50
05C38

Keywords:
Laplacian eigenvalue
Pendant path
Signless Laplacian eigenvalue

Abstract

Let G be a simple graph. A pendant path of G is a path such that one of its end vertices has degree 1, the other end has degree ≥ 3, and all the internal vertices have degree 2 . Let $p_{k}(G)$ be the number of pendant paths of length k of G, and $q_{k}(G)$ be the number of vertices with degree ≥ 3 which are an end vertex of some pendant paths of length k. Motivated by the problem of characterizing dendritic trees, N. Saito and E. Woei conjectured that any graph G has some Laplacian eigenvalue with multiplicity at least $p_{k}(G)-q_{k}(G)$. We prove a more general result for both Laplacian and signless Laplacian eigenvalues from which the conjecture follows.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Let G be a simple graph. A pendant path of G is a path such that one of its end vertices has degree 1 , the other end has degree ≥ 3, and all the internal ver-

[^0]tices have degree 2 . Let $p_{k}(G)$ denote the number of pendant paths of length k of G, and $q_{k}(G)$ denote the number of vertices with degree ≥ 3 which are an end vertex of some pendant paths of length k. Saito and Woei [4] studied Laplacian eigenvalues of dendritic trees. They observed eigenvalue(s) 'plateaux' (i.e., set of eigenvalue(s) with multiplicity) in the Laplacian eigenvalues of such trees. More generally, they showed that $(3 \pm \sqrt{5}) / 2$ is a Laplacian eigenvalue of any graph G with multiplicity at least $p_{2}(G)-q_{2}(G)$. This motivated them to put forward the following conjecture.

Conjecture 1. ([4]) For any positive integer k, any graph G has some Laplacian eigenvalue with multiplicity at least $p_{k}(G)-q_{k}(G)$.

We remark that the special cases $k=1$ follows from a result of [2] (see also [3]) asserting that multiplicity of 1 as a Laplacian eigenvalue of a graph G is at least $p_{1}(G)-$ $q_{1}(G)$. We prove a more general result (Theorem 4 below) for both Laplacian and signless Laplacian eigenvalues from which Conjecture 1 follows.

2. Preliminaries

Let G be a simple graph with vertex set $\left\{v_{1}, \ldots, v_{n}\right\}$ and edge set $\left\{e_{1}, \ldots, e_{m}\right\}$. The adjacency matrix of G is an $n \times n$ matrix $A=A(G)$ whose (i, j)-entry is 1 if v_{i} is adjacent to v_{j} and 0 otherwise. The incident matrix of $G, X=X(G)=\left(x_{i j}\right)$, is an $n \times m$ matrix whose rows and columns are indexed by vertex set and edge set of G, respectively, where

$$
x_{i j}= \begin{cases}1 & \text { if } e_{j} \text { is incident with } v_{i} \\ 0 & \text { otherwise }\end{cases}
$$

If we orient the edges of G, we may define similarly the directed incidence matrix $D=D(G)=\left(d_{i j}\right)$, with respect to the particular orientation, as

$$
d_{i j}= \begin{cases}+1 & \text { if } e_{j} \text { is an incoming edge to } v_{i} \\ -1 & \text { if } e_{j} \text { is an outgoing edge from } v_{i} \\ 0 & \text { otherwise. }\end{cases}
$$

The matrices $L(G):=D D^{\top}$ and $Q(G):=X X^{\top}$ are called the Laplacian matrix and signless Laplacian matrix of G, respectively. It is easily seen that $L(G)=$ $\Delta-A$ and $Q(G)=\Delta+A$ where Δ is the diagonal matrix of vertex degrees of G.

For any $n \times m$ matrix M, and nonzero real λ, we have

$$
\operatorname{det}\left(\begin{array}{cc}
\lambda I_{n} & M \\
M^{\top} & \lambda I_{m}
\end{array}\right)=\lambda^{m-n} \operatorname{det}\left(\lambda^{2} I_{n}-M M^{\top}\right)
$$

https://daneshyari.com/en/article/4598479

Download Persian Version:
https://daneshyari.com/article/4598479

Daneshyari.com

[^0]: * Correspondence to: School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5746, Tehran, Iran.

 E-mail address: e_ghorbani@ipm.ir.

