The star-shapedness of a generalized numerical range

Pan-Shun Lau*, Tuen-Wai Ng, Nam-Kiu Tsing
Department of Mathematics, The University of Hong Kong, Pokfulam, Hong Kong

A R T I C L E I N F O

Article history:

Received 12 January 2016
Accepted 1 June 2016
Available online 3 June 2016
Submitted by R. Brualdi

MSC:

15A04
15A60

Keywords:

Generalized numerical range
Star-shapedness
Joint unitary orbit

A B S T R A C T

Let \mathcal{H}_{n} be the set of all $n \times n$ Hermitian matrices and \mathcal{H}_{n}^{m} be the set of all m-tuples of $n \times n$ Hermitian matrices. For $A=\left(A_{1}, \ldots, A_{m}\right) \in \mathcal{H}_{n}^{m}$ and for any linear map $L: \mathcal{H}_{n}^{m} \rightarrow \mathbb{R}^{\ell}$, we define the L-numerical range of A by

$$
W_{L}(A):=\left\{L\left(U^{*} A_{1} U, \ldots, U^{*} A_{m} U\right): U \in \mathbb{C}^{n \times n}, U^{*} U=I_{n}\right\} .
$$

In this paper, we prove that if $\ell \leq 3, n \geq \ell$ and A_{1}, \ldots, A_{m} are simultaneously unitarily diagonalizable, then $W_{L}(A)$ is star-shaped with star center at $L\left(\frac{\operatorname{tr} A_{1}}{n} I_{n}, \ldots, \frac{\operatorname{tr} A_{m}}{n} I_{n}\right)$.
© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Let $\mathbb{C}^{n \times n}$ denote the set of all $n \times n$ complex matrices, and $A \in \mathbb{C}^{n \times n}$. The (classical) numerical range of A is defined by

$$
W(A):=\left\{x^{*} A x: x \in \mathbb{C}^{n}, x^{*} x=1\right\}
$$

[^0]http://dx.doi.org/10.1016/j.laa.2016.06.002
0024-3795/© 2016 Elsevier Inc. All rights reserved.

The properties of $W(A)$ were studied extensively in the last few decades and many nice results were obtained; see $[10,13]$. The most beautiful result is probably the ToeplitzHausdorff Theorem which affirmed the convexity of $W(A)$; see [12,17]. The generalizations of $W(A)$ remain an active research area in the field.

For any $A \in \mathbb{C}^{n \times n}$, write $A=A_{1}+i A_{2}$ where A_{1}, A_{2} are Hermitian matrices. Then by regarding \mathbb{C} as \mathbb{R}^{2}, one can rewrite $W(A)$ as

$$
W(A):=\left\{\left(x^{*} A_{1} x, x^{*} A_{2} x\right): x \in \mathbb{C}^{n}, x^{*} x=1\right\}
$$

This expression motivates naturally the generalization of the numerical range to the joint numerical range, which is defined as follows. Let \mathcal{H}_{n} be the set of all $n \times n$ Hermitian matrices and \mathcal{H}_{n}^{m} be the set of all m-tuples of $n \times n$ Hermitian matrices. The joint numerical range of $A=\left(A_{1}, \ldots, A_{m}\right) \in \mathcal{H}_{n}^{m}$ is defined as

$$
W(A)=W\left(A_{1}, \ldots, A_{m}\right):=\left\{\left(x^{*} A_{1} x, \ldots, x^{*} A_{m} x\right): x \in \mathbb{C}^{n}, x^{*} x=1\right\}
$$

It has been shown that for $m \leq 3$ and $n \geq m$, the joint numerical range is always convex [1]. This result generalizes the Toeplitz-Hausdorff Theorem. However, the convexity of the joint numerical range fails to hold in general for $m>3$, see $[1,11,14]$.

When a new generalization of numerical range is introduced, people are always interested in its convexity. Unfortunately, this nice property fails to hold in some generalizations. However, another property, namely star-shapedness, holds in some generalizations; see $[5,18]$. Therefore, the star-shapedness is the next consideration when the generalized numerical ranges fail to be convex. A set M is called star-shaped with respect to a star-center $x_{0} \in M$ if for any $0 \leq \alpha \leq 1$ and $x \in M$, we have $\alpha x+(1-\alpha) x_{0} \in M$. In [15], Li and Poon showed that for a given m, the joint numerical range $W\left(A_{1}, \ldots, A_{m}\right)$ is star-shaped if n is sufficiently large.

Let \mathcal{U}_{n} be the set of all $n \times n$ unitary matrices. For $C \in \mathcal{H}_{n}$ and $A=\left(A_{1}, \ldots, A_{m}\right) \in \mathcal{H}_{n}^{m}$, the joint C-numerical range of A is defined by

$$
W_{C}(A):=\left\{\left(\operatorname{tr}\left(C U^{*} A_{1} U\right), \ldots, \operatorname{tr}\left(C U^{*} A_{m} U\right): U \in \mathcal{U}_{n}\right\}\right.
$$

where $\operatorname{tr}(\cdot)$ is the trace function. When C is the diagonal matrix with diagonal elements $1,0, \ldots, 0$, then $W_{C}(A)$ reduces to $W(A)$. Hence the joint C-numerical range is a generalization of the joint numerical range. In [3], Au-Yeung and Tsing generalized the convexity result of the joint numerical range to the joint C-numerical range by showing that $W_{C}(A)$ is always convex if $m \leq 3$ and $n \geq m$. However $W_{C}(A)$ fails to be convex in general if $m>3$. One may consult [6] and [7] for the study of the convexity of $W_{C}(A)$. The star-shapedness of $W_{C}(A)$ remains unclear for $m>3$.

For $A=\left(A_{1}, \ldots, A_{m}\right) \in \mathcal{H}_{n}^{m}$, we define the joint unitary orbit of A by

$$
\mathcal{U}_{n}(A):=\left\{\left(U^{*} A_{1} U, \ldots, U^{*} A_{m} U\right): U \in \mathcal{U}_{n}\right\} .
$$

https://daneshyari.com/en/article/4598481

Download Persian Version:

https://daneshyari.com/article/4598481

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: panlau@hku.hk (P.-S. Lau), ntw@maths.hku.hk (T.-W. Ng), nktsing@hku.hk (N.-K. Tsing).

