

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

The star-shapedness of a generalized numerical range

LINEAR

ications

Pan-Shun Lau*, Tuen-Wai Ng, Nam-Kiu Tsing

Department of Mathematics, The University of Hong Kong, Pokfulam, Hong Kong

A R T I C L E I N F O

Article history: Received 12 January 2016 Accepted 1 June 2016 Available online 3 June 2016 Submitted by R. Brualdi

MSC: 15A04 15A60

Keywords: Generalized numerical range Star-shapedness Joint unitary orbit

ABSTRACT

Let \mathcal{H}_n be the set of all $n \times n$ Hermitian matrices and \mathcal{H}_n^m be the set of all *m*-tuples of $n \times n$ Hermitian matrices. For $A = (A_1, ..., A_m) \in \mathcal{H}_n^m$ and for any linear map $L : \mathcal{H}_n^m \to \mathbb{R}^\ell$, we define the *L*-numerical range of *A* by

$$W_L(A) := \{ L(U^*A_1U, ..., U^*A_mU) : U \in \mathbb{C}^{n \times n}, U^*U = I_n \}.$$

In this paper, we prove that if $\ell \leq 3$, $n \geq \ell$ and $A_1, ..., A_m$ are simultaneously unitarily diagonalizable, then $W_L(A)$ is star-shaped with star center at $L\left(\frac{\operatorname{tr} A_1}{n}I_n, ..., \frac{\operatorname{tr} A_m}{n}I_n\right)$.

@ 2016 Elsevier Inc. All rights reserved.

1. Introduction

Let $\mathbb{C}^{n \times n}$ denote the set of all $n \times n$ complex matrices, and $A \in \mathbb{C}^{n \times n}$. The (classical) numerical range of A is defined by

$$W(A) := \{ x^* A x : x \in \mathbb{C}^n, x^* x = 1 \}.$$

* Corresponding author.

E-mail addresses: panlau@hku.hk (P.-S. Lau), ntw@maths.hku.hk (T.-W. Ng), nktsing@hku.hk (N.-K. Tsing).

The properties of W(A) were studied extensively in the last few decades and many nice results were obtained; see [10,13]. The most beautiful result is probably the Toeplitz– Hausdorff Theorem which affirmed the convexity of W(A); see [12,17]. The generalizations of W(A) remain an active research area in the field.

For any $A \in \mathbb{C}^{n \times n}$, write $A = A_1 + iA_2$ where A_1, A_2 are Hermitian matrices. Then by regarding \mathbb{C} as \mathbb{R}^2 , one can rewrite W(A) as

$$W(A) := \{ (x^*A_1x, x^*A_2x) : x \in \mathbb{C}^n, x^*x = 1 \}.$$

This expression motivates naturally the generalization of the numerical range to the joint numerical range, which is defined as follows. Let \mathcal{H}_n be the set of all $n \times n$ Hermitian matrices and \mathcal{H}_n^m be the set of all *m*-tuples of $n \times n$ Hermitian matrices. The joint numerical range of $A = (A_1, ..., A_m) \in \mathcal{H}_n^m$ is defined as

$$W(A) = W(A_1, ..., A_m) := \{(x^*A_1x, ..., x^*A_mx) : x \in \mathbb{C}^n, x^*x = 1\}$$

It has been shown that for $m \leq 3$ and $n \geq m$, the joint numerical range is always convex [1]. This result generalizes the Toeplitz-Hausdorff Theorem. However, the convexity of the joint numerical range fails to hold in general for m > 3, see [1,11,14].

When a new generalization of numerical range is introduced, people are always interested in its convexity. Unfortunately, this nice property fails to hold in some generalizations. However, another property, namely star-shapedness, holds in some generalizations; see [5,18]. Therefore, the star-shapedness is the next consideration when the generalized numerical ranges fail to be convex. A set M is called star-shaped with respect to a star-center $x_0 \in M$ if for any $0 \le \alpha \le 1$ and $x \in M$, we have $\alpha x + (1 - \alpha)x_0 \in M$. In [15], Li and Poon showed that for a given m, the joint numerical range $W(A_1, ..., A_m)$ is star-shaped if n is sufficiently large.

Let \mathcal{U}_n be the set of all $n \times n$ unitary matrices. For $C \in \mathcal{H}_n$ and $A = (A_1, ..., A_m) \in \mathcal{H}_n^m$, the joint *C*-numerical range of *A* is defined by

$$W_C(A) := \{ (tr(CU^*A_1U), ..., tr(CU^*A_mU) : U \in \mathcal{U}_n \},\$$

where tr(·) is the trace function. When C is the diagonal matrix with diagonal elements 1, 0, ..., 0, then $W_C(A)$ reduces to W(A). Hence the joint C-numerical range is a generalization of the joint numerical range. In [3], Au-Yeung and Tsing generalized the convexity result of the joint numerical range to the joint C-numerical range by showing that $W_C(A)$ is always convex if $m \leq 3$ and $n \geq m$. However $W_C(A)$ fails to be convex in general if m > 3. One may consult [6] and [7] for the study of the convexity of $W_C(A)$. The star-shapedness of $W_C(A)$ remains unclear for m > 3.

For $A = (A_1, ..., A_m) \in \mathcal{H}_n^m$, we define the joint unitary orbit of A by

$$\mathcal{U}_n(A) := \{ (U^* A_1 U, ..., U^* A_m U) : U \in \mathcal{U}_n \}.$$

Download English Version:

https://daneshyari.com/en/article/4598481

Download Persian Version:

https://daneshyari.com/article/4598481

Daneshyari.com