

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

The characteristic subspace lattice of a linear transformation

David Mingueza^a, M. Eulàlia Montoro^{b,*,1}, Alicia Roca^{c,2}

- ^a Accenture, Av. Diagonal 615, 08028 Barcelona, Spain
- ^b Universitat de Barcelona, Gran Via de les Corts Catalanes 585, 08007 Barcelona, Spain
- ^c Dept. of Matemática Aplicada, IMM, Polytechnic U. Valencia, Spain

ARTICLE INFO

Article history: Received 25 February 2016 Accepted 2 June 2016 Available online 7 June 2016 Submitted by R. Brualdi

MSC: 06F20 06D50 15A03

15A27

Keywords: Hyperinvariant subspaces Characteristic subspaces Lattices

ABSTRACT

Given a square matrix $A \in M_n(\mathbb{F})$, the lattices of the hyperinvariant (Hinv(A)) and characteristic (Chinv(A)) subspaces coincide whenever $\mathbb{F} \neq GF(2)$. If the characteristic polynomial of A splits over \mathbb{F} , A can be considered nilpotent. In this paper we investigate the properties of the lattice Chinv(J) when $\mathbb{F} = GF(2)$ for a nilpotent matrix J. In particular, we prove it to be self-dual.

© 2016 Elsevier Inc. All rights reserved.

^{*} Corresponding author.

 $[\]label{lem:eq:condition} \textit{E-mail addresses:} \ \, \texttt{david.mingueza@ya.com} \ \, \text{(D. Mingueza), eula.montoro@ub.edu (M.E. Montoro),} \\ \text{aroca@mat.upv.es} \ \, \text{(A. Roca).}$

¹ Partially supported by MINECO, grant MTM2015-65361-P.

 $^{^2}$ Partially supported by MINECO, grant MTM2013-40960-P, and by Gobierno Vasco, grant $\rm GIC13/IT\text{-}710\text{-}13.$

1. Introduction

Let \mathbb{F}^n be the n-dimensional vector space over a field \mathbb{F} , and $A \in M_n(\mathbb{F})$ a square matrix corresponding to an endomorphism of \mathbb{F}^n in a fixed basis. A vector subspace $V \subseteq \mathbb{F}^n$ is called invariant with respect to the endomorphism if $AV \subseteq V$. The subspace V is hyperinvariant if it is invariant for every matrix $T \in Z(A)$ (i.e. commuting with A). Weakening the latter condition, if it is only satisfied for every nonsingular matrix T commuting with A, the subspace is called characteristic. Obviously

$$\operatorname{Hinv}(A) \subseteq \operatorname{Chinv}(A) \subseteq \operatorname{Inv}(A),$$

where $\operatorname{Hinv}(A)$, $\operatorname{Chinv}(A)$ and $\operatorname{Inv}(A)$ denote the lattices of hyperinvariant, characteristic and invariant subspaces, respectively.

For an arbitrary field \mathbb{F} , the lattice $\operatorname{Inv}(A)$ is studied in [3], where it is proven to be self-dual, and characterizations of some other properties are given, for instance when it is distributive or Boolean, among others. A full description of $\operatorname{Hinv}(A)$ when $\mathbb{F} = \mathbb{C}$ or \mathbb{R} can be found in [5], where it is proven to be a distributive and self-dual lattice, and tight bounds for its cardinality are provided. Concerning $\operatorname{Chinv}(A)$, if the characteristic polynomial of A splits over \mathbb{F} and $\operatorname{card}(\mathbb{F}) > 2$, $\operatorname{Chinv}(A) = \operatorname{Hinv}(A)$ [1]. When $\operatorname{card}(\mathbb{F}) = 2$, $\operatorname{Chinv}(A)$ and $\operatorname{Hinv}(A)$ in general do not coincide. Moreover, if all of the eigenvalues of A are in \mathbb{F} , the study of $\operatorname{Hinv}(A)$ and $\operatorname{Chinv}(A)$ can be reduced to the case where A has a unique eigenvalue (see, for instance [1,2,5]). Therefore, if the characteristic polynomial of A splits over \mathbb{F} , we can assume A to be a nilpotent matrix.

If A is a nilpotent matrix, and $\operatorname{card}(\mathbb{F}) = 2$, Shoda's Theorem (see for instance [2]) characterizes the existence of characteristic non-hyperinvariant subspaces. General conditions for their existence, as well as some examples, can be found in [1,2]. A construction to explicitly obtain all of the characteristic non-hyperinvariant subspaces of A is given in [7].

Our aim in this paper is to analyze basic properties of the lattice of the characteristic subspaces $\operatorname{Chinv}(A)$ of a nilpotent matrix A when $\mathbb{F} = GF(2)$. In particular we will prove that it is a self-dual lattice.

The paper is organized as follows: In section 2 we introduce the notation and basic results. We present here the structure of the characteristic non-hyperinvariant subspaces of A as obtained in [7]. In section 3 we analyze the properties of the lattice Chinv(A). In particular, we give an anti-isomorphism from Chinv(A) to Chinv(A), hence proving that the lattice is self-dual.

2. Preliminaries

Throughout the paper we will assume that $\mathbb{F} = GF(2)$ and A = J a nilpotent Jordan matrix. Given a set of vectors $\{v_1, \ldots, v_t\} \subset \mathbb{F}^n$, we represent by $\operatorname{span}\{v_1, \ldots, v_t\}$ the vector subspace of linear combinations of the vectors $\{v_1, \ldots, v_t\}$. If E, F are vector subspaces of \mathbb{F}^n , the notation $E \cong F$ means that they are isomorphic.

Download English Version:

https://daneshyari.com/en/article/4598483

Download Persian Version:

https://daneshyari.com/article/4598483

<u>Daneshyari.com</u>