

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

Boolean convolution in the quaternionic setting

LINEAR ALGEBI and its

Applications

Daniel Alpay^a, Marek Bożejko^b, Fabrizio Colombo^c, David P. Kimsey^{d,*}, Irene Sabadini^c

^a Department of Mathematics, Ben-Gurion University of the Negev,

Beer-Sheva 84105, Israel

^b Instytut Matematyczny Uniwersytetu Wroclawskiego, Pl. Grunwaldzki 2/4,

50-384, Wroclaw, Poland

 $^{\rm c}$ Politecnico di Milano, Dipartimento di Matematica, Via E. Bonardi, 9, 20133 Milano, Italy

 $^{\rm d}$ School of Mathematics and Statistics, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom

A R T I C L E I N F O

Article history: Received 3 March 2016 Accepted 1 June 2016 Available online 6 June 2016 Submitted by V. Muller

MSC: 46L51 46L53 47A57

Keywords: Boolean convolution Quaternionic-valued measures Matrix-valued measures Herglotz and Carathéodory functions

ABSTRACT

In this paper we begin a study of free analysis in the quaternionic setting, and consider Boolean convolution for quaternion-valued measures. To this end we also study Boolean convolution for matrix-valued complex measures, also proving Boolean infinite divisibility and central limit theorems for these measures. Moreover we prove an integral representation for quaternionic Carathéodory and Herglotz functions.

© 2016 Elsevier Inc. All rights reserved.

* Corresponding author.

E-mail addresses: dany@math.bgu.ac.il (D. Alpay), bozejko@math.uni.wroc.pl (M. Bożejko), fabrizio.colombo@polimi.it (F. Colombo), david.kimsey@ncl.ac.uk (D.P. Kimsey), irene.sabadini@polimi.it (I. Sabadini).

1. Introduction

In this paper we begin a study of free analysis in the quaternionic setting. We denote by \mathbb{H} the skew-field of quaternions and by \mathbb{S} the sphere of purely imaginary quaternions qsuch that $q^2 = -1$ (basic definitions on quaternions and hyperholomorphic functions are recalled in Section 3.1). Let i be any fixed element in \mathbb{S} . Then it is possible to choose $j \in \mathbb{S}$ orthogonal to i, and any quaternion $q \in \mathbb{H}$ can be written as $q = x_0 + x_1 i + x_2 j + x_3 i j =$ $z_1 + z_2 j$ where $x_\ell \in \mathbb{R}, \ \ell = 0, \ldots, 3$ and $z_1, \ z_2$ belong to the complex plane whose imaginary unit is i (and, in particular, $z_1, \ z_2$ can be real numbers).

Motivated by the work [3], where the notion of quaternionic q-positive measure on $[0, 2\pi]$ was introduced, we consider in this paper measures $dn(t) = dn_0(t) + jdn_1(t)$ on $i\mathbb{R}$ identified with the real line, with real-valued components dn_0 and dn_1 with the following properties: The measure dn_0 is positive and even, dn_1 is a signed odd measure, and the $\mathbb{R}^{2\times 2}$ -valued measure

$$d\widetilde{n}(t) = \begin{pmatrix} dn_0(t) & dn_1(t) \\ dn_1(t) & dn_0(t) \end{pmatrix}$$

is positive. Such measures will be called *j*-positive. For a fixed choice of (i, j), these measures are in one-to-one correspondence with slice-hyperholomorphic functions mapping the right half-plane \mathbb{H}_+ into itself, with a growth condition at infinity. As is well known (see e.g. [15]), such functions in the complex setting (and with \mathbb{H}_+ replaced by the open upper half-plane) play a key role in free analysis.

In order to study the quaternionic case, it is sometimes useful to consider, instead of quaternionic-valued functions, $\mathbb{C}^{2\times 2}$ -valued functions. This fact naturally leads us to consider the more general case of $\mathbb{C}^{n\times n}$ -valued Herglotz functions. Moreover we studied the moments and the Boolean convolution of two $\mathbb{C}^{n\times n}$ -valued measures and related problems (see [5] for related work). Then we show that a normalized $\mathbb{C}^{n\times n}$ -valued measure with compact support is Boolean infinitely divisible. We also prove a central limit theorem.

We note that among the 2 × 2 matrices useful in the quaternionic setting appears the algebra \mathcal{A} of $\mathbb{R}^{2\times 2}$ -valued matrices of the form $\begin{pmatrix} a & b \\ b & a \end{pmatrix}$, where $a, b \in \mathbb{R}$. These are the hyperbolic numbers from hypercomplex analysis (see [4] for the latter). A key fact in the arguments is that the moments (when defined) of a *j*-positive measure belong to \mathcal{A} . Since sums and products of moments stay in the algebra \mathcal{A} , we define the Boolean convolution of two *j*-positive measures μ and ν via the convolutions of the associated measures $\tilde{\mu}$ and $\tilde{\nu}$.

In summary, the key idea is to first study Boolean (additive) convolution for complex matrix-valued normalized (that is, with full mass equal to I_n) measures with compact support. Then we move to a subfamily of these measures, called *j*-positive (see also [2]), whose moments belong to the above mentioned algebra \mathcal{A} . This is a specific feature of the quaternionic case, which is needed to develop the corresponding theory. As a Download English Version:

https://daneshyari.com/en/article/4598486

Download Persian Version:

https://daneshyari.com/article/4598486

Daneshyari.com