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In this paper we begin a study of free analysis in the 
quaternionic setting, and consider Boolean convolution for 
quaternion-valued measures. To this end we also study 
Boolean convolution for matrix-valued complex measures, 
also proving Boolean infinite divisibility and central limit 
theorems for these measures. Moreover we prove an integral 
representation for quaternionic Carathéodory and Herglotz 
functions.
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1. Introduction

In this paper we begin a study of free analysis in the quaternionic setting. We denote 
by H the skew-field of quaternions and by S the sphere of purely imaginary quaternions q
such that q2 = −1 (basic definitions on quaternions and hyperholomorphic functions are 
recalled in Section 3.1). Let i be any fixed element in S. Then it is possible to choose j ∈ S

orthogonal to i, and any quaternion q ∈ H can be written as q = x0 +x1i +x2j +x3ij =
z1 + z2j where x� ∈ R, � = 0, . . . , 3 and z1, z2 belong to the complex plane whose 
imaginary unit is i (and, in particular, z1, z2 can be real numbers).

Motivated by the work [3], where the notion of quaternionic q-positive measure on 
[0, 2π] was introduced, we consider in this paper measures dn(t) = dn0(t) +jdn1(t) on iR
identified with the real line, with real-valued components dn0 and dn1 with the following 
properties: The measure dn0 is positive and even, dn1 is a signed odd measure, and the 
R2×2-valued measure

dñ(t) =
(
dn0(t) dn1(t)
dn1(t) dn0(t)

)
is positive. Such measures will be called j-positive. For a fixed choice of (i, j), these mea-
sures are in one-to-one correspondence with slice-hyperholomorphic functions mapping 
the right half-plane H+ into itself, with a growth condition at infinity. As is well known 
(see e.g. [15]), such functions in the complex setting (and with H+ replaced by the open 
upper half-plane) play a key role in free analysis.

In order to study the quaternionic case, it is sometimes useful to consider, instead 
of quaternionic-valued functions, C2×2-valued functions. This fact naturally leads us to 
consider the more general case of Cn×n-valued Herglotz functions. Moreover we studied 
the moments and the Boolean convolution of two Cn×n-valued measures and related 
problems (see [5] for related work). Then we show that a normalized Cn×n-valued mea-
sure with compact support is Boolean infinitely divisible. We also prove a central limit 
theorem.

We note that among the 2 × 2 matrices useful in the quaternionic setting appears 
the algebra A of R2×2-valued matrices of the form 

(
a b
b a

)
, where a, b ∈ R. These are the 

hyperbolic numbers from hypercomplex analysis (see [4] for the latter). A key fact in the 
arguments is that the moments (when defined) of a j-positive measure belong to A. Since 
sums and products of moments stay in the algebra A, we define the Boolean convolution 
of two j-positive measures μ and ν via the convolutions of the associated measures μ̃
and ν̃.

In summary, the key idea is to first study Boolean (additive) convolution for complex 
matrix-valued normalized (that is, with full mass equal to In) measures with compact 
support. Then we move to a subfamily of these measures, called j-positive (see also [2]), 
whose moments belong to the above mentioned algebra A. This is a specific feature 
of the quaternionic case, which is needed to develop the corresponding theory. As a 
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