

Isotonic linear operators on the space of all convergent real sequences

Noha Eftekhari*, Ali Bayati Eshkaftaki

Department of Pure Mathematics, Faculty of Mathematical Sciences, Shahrekord University, P.O. Box 115, Shahrekord, 88186-34141, Iran

ARTICLE INFO

Article history: Received 22 December 2015 Accepted 1 June 2016 Available online 6 June 2016 Submitted by V. Muller

MSC: 15A86 47B60

Keywords: Convex majorization Convex equivalent Linear preserver Isotonic

ABSTRACT

In this work, we consider a natural preorder on \mathfrak{c} , the Banach space of all convergent real sequences, which is called convex majorization. We find a large class of bounded linear operators $T: \mathfrak{c} \to \mathfrak{c}$, which preserve convex majorization and denote this class by \mathcal{I} . Then some interesting properties of each $T \in \mathcal{I}$ are obtained.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction and preliminaries

For $x, y \in \mathbb{R}^n$, the vector $x = (x_1, \ldots, x_n)$ is said to be majorized by $y = (y_1, \ldots, y_n)$, denoted by $x \prec y$, if

^{*} Corresponding author.

E-mail addresses: eftekharinoha@yahoo.com, eftekhari-n@sci.sku.ac.ir (N. Eftekhari), a.bayati@math.iut.ac.ir, bayati.ali@sci.sku.ac.ir (A. Bayati Eshkaftaki).

$$\sum_{i=1}^{n} x_{i}^{\downarrow} = \sum_{i=1}^{n} y_{i}^{\downarrow} \text{ and } \sum_{i=1}^{k} x_{i}^{\downarrow} \le \sum_{i=1}^{k} y_{i}^{\downarrow} \text{ for } k = 1, \dots, n-1,$$

where $x_1^{\downarrow} \ge x_2^{\downarrow} \ge \cdots \ge x_n^{\downarrow}$ is the decreasing order of the components of x.

The notion of majorization has been extended by numerous mathematicians [2,3,5, 8,9]. There are several equivalent conditions of majorization on \mathbb{R}^n . Hardy, Littlewood, and Polya in [4] proved that $(x_1, \ldots, x_n) = x \prec y = (y_1, \ldots, y_n)$ is equivalent to

$$\sum_{i=1}^{n} \phi(x_i) \le \sum_{i=1}^{n} \phi(y_i),$$

for all continuous convex functions $\phi : \mathbb{R} \to \mathbb{R}$. In fact, the previous characterization shows that if $x \prec y$, then $co(x) \subseteq co(y)$, where co(x) is the convex hull of the set of the components of x.

The topic of linear preservers is of interest to a large group of matrix theorists. For a survey of linear preserver problems see [10]. In 1989 [1], Ando characterized the linear operators which preserve majorization on \mathbb{R}^n . On the basis of row-stochastic matrices, Khalooei, Radjabalipour, and Salemi [6,7] introduced the concept of left matrix majorization and determined all linear operator preserving left matrix majorization. It is easy to see that for each $x, y \in \mathbb{R}^n$, the vector x is left matrix majorized by y if and only if

$$\operatorname{co}(x) \subseteq \operatorname{co}(y). \tag{1}$$

Let \mathfrak{c} be the Banach space of all convergent real sequences with the supremum norm $||x|| = \sup_{j \in \mathbb{N}} |x_j|$, for $x = (x_1, x_2, \ldots) \in \mathfrak{c}$. Also, \mathfrak{c}_0 is the Banach space of all real sequences which tend to zero. For abbreviation, we write $\operatorname{co}(x)$, instead of the convex combination of the set $\operatorname{Im}(x) = \{x_j : j \in \mathbb{N}\}$, where $x \in \mathfrak{c}$. Also, we use the notation $\lim_{j \to \infty} x_j$, for all $x \in \mathfrak{c}$. An element $x \in \mathfrak{c}$ can be represented by $\sum_{j \in \mathbb{N}} x_j e_j$, where $e_j : \mathbb{N} \to \mathbb{R}$ is defined by $e_j(i) = \delta_{ij}$, the Kronecker delta.

We organize this paper as follows. In the next section, by using (1), we extend the notion of the left matrix majorization to discrete space \mathfrak{c} . Then some properties of bounded linear operators preserving such majorization are proved and some relevant examples are considered. Finally, we propose some related open problems to the interested readers.

2. Main results

We first define a preorder on c, which is said to be "convex majorization" as the following.

536

Download English Version:

https://daneshyari.com/en/article/4598491

Download Persian Version:

https://daneshyari.com/article/4598491

Daneshyari.com