

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

Weak-local triple derivations on C*-algebras and JB*-triples $\stackrel{\approx}{\sim}$

LINEAR ALGEBRA and its

Applications

María J. Burgos^a, Juan Carlos Cabello^b, Antonio M. Peralta^{b,*}

 ^a Campus de Jerez, Facultad de Ciencias Sociales y de la Comunicación, Av. de la Universidad s/n, 11405 Jerez, Cádiz, Spain
^b Departamento de Análisis Matemático, Universidad de Granada, Facultad de Ciencias, 18071, Granada, Spain

ARTICLE INFO

Article history: Received 15 April 2016 Accepted 24 June 2016 Available online 29 June 2016 Submitted by P. Semrl

 $\begin{array}{c} MSC: \\ 47B47 \\ 46L57 \\ 17C65 \\ 47C15 \\ 46L05 \\ 46L08 \end{array}$

Keywords: C*-algebra JB*-triple Triple derivation Weak-local triple derivation Weak-local derivation

ABSTRACT

We prove that every weak-local triple derivation on a JB*-triple E (i.e. a linear map $T : E \to E$ such that for each $\phi \in E^*$ and each $a \in E$, there exists a triple derivation $\delta_{a,\phi} : E \to E$, depending on ϕ and a, such that $\phi T(a) = \phi \delta_{a,\phi}(a)$) is a (continuous) triple derivation. We also prove that conditions

(h1) $\{a, T(b), c\} = 0$ for every a, b, c in E with $a, c \perp b$;

(h2) $P_2(e)T(a) = -Q(e)T(a)$ for every norm-one element a in E, and every tripotent e in E^{**} such that $e \leq s(a)$ in $E_2^{**}(e)$, where s(a) is the support tripotent of a in E^{**} ,

are necessary and sufficient to show that a linear map T on a JB*-triple E is a triple derivation.

© 2016 Elsevier Inc. All rights reserved.

 $\label{eq:http://dx.doi.org/10.1016/j.laa.2016.06.042} 0024-3795 \ensuremath{\oslash} \ensuremath{\bigcirc} \ensuremath{\otimes} \ensuremath{\bigcirc} \ensuremath{\otimes} \ensuremath{\bigcirc} \ensuremath{\otimes} \ensuremath{\otimes}$

 $^{^{*}}$ Authors partially supported by the Spanish Ministry of Economy and Competitiveness and European Regional Development Fund project no. MTM2014-58984-P and Junta de Andalucía grants FQM375 and FQM290.

^{*} Corresponding author.

E-mail addresses: maria.burgos@uca.es (M.J. Burgos), jcabello@ugr.es (J.C. Cabello), aperalta@ugr.es (A.M. Peralta).

1. Introduction

A triple derivation on a JB*-triple E is a linear mapping $\delta : E \to E$ satisfying the following Leibniz' rule

$$\delta\{a, b, c\} = \{\delta(a), b, c\} + \{a, \delta(b), c\} + \{a, b, \delta(c)\},$$
(1)

for every $a, b, c \in E$. T. Barton and Y. Friedman proved, in [1, Corollary 2.2], that the geometric structure of JB*-triples assures that every triple derivation on a JB*-triple is continuous.

Motivated by the different studies on local (associative) derivations on C^{*}-algebras (compare [18,22,17]), M. Mackey introduced and presented, in [20], the first study about local triple derivations on JB^{*}-triples. We recall that a *local triple derivation* on a JB^{*}-triple E is a linear map $T : E \to E$ such that for each a in E there exists a triple derivation $\delta_a : E \to E$, depending on a, satisfying $T(a) = \delta_a(a)$. It is due to Mackey that every continuous local triple on a JBW^{*}-triple (i.e. a JB^{*}-triple which is also a dual Banach space) is a triple derivation (see [20, Theorem 5.11]). The first and third author of this note, in collaboration with F.J. Fernández-Polo, established in [7] that every local triple derivation on a JB^{*}-triple is continuous and a triple derivation.

In the setting of C^{*}-algebras, B.A. Essaleh, M.I. Ramírez, and the third author of this note explore the notions of weak-local derivation and weak*-local derivation on C^* -algebras and von Neumann algebras, respectively (see [10,11]). Going back in history, we remind that, according to Kadison's definition, a local derivation from a C*-algebra A into a Banach A-bimodule, X, is a linear map $T: A \to X$ such that for each $a \in A$ there exits a derivation $D_a: A \to X$, depending on a, satisfying $T(a) = D_a(a)$. B.E. Johnson proved in [17] that every local derivation from a C^{*}-algebra A into a Banach A-bimodule is continuous and a derivation. Following [10], a linear mapping $T: A \to X$ is called a weak-local derivation if for each $\phi \in X^*$ and each $a \in A$, there exists a derivation $D_{a,\phi}: A \to X$, depending on ϕ and a, such that $\phi T(a) = \phi D_{a,\phi}(a)$. It is shown in [10, Theorems 2.1 and 3.4] (see also [11]) that every weak-local derivation on a C*-algebra is continuous and a derivation. Similarly, if W is a von Neumann algebra (i.e. a C^* -algebra which is also a dual Banach space) a weak*-local derivation on W is a linear map T: $W \to W$ such that for each $\phi \in W_*$ and each $a \in W$, there exists a derivation $D_{a,\phi}$: $W \to W$, depending on ϕ and a, such that $\phi T(a) = \phi D_{a,\phi}(a)$. Weak*-local derivations on a von Neumann algebra are automatically continuous and derivations (see [10, Theorems 2.8 and 3.1]).

In the wider setting of JB*-triples, weak-local triple derivations seem a natural notion to explore in this line. We shall say that a linear map T on a JB*-triple E is a weak-local triple derivation if for each $\phi \in E^*$ and each $a \in E$, there exists a triple derivation $\delta_{a,\phi} : E \to E$, depending on ϕ and a, such that $\phi T(a) = \phi \delta_{a,\phi}(a)$. Weak*-local triple derivations on a JBW*-triple are similarly defined. Download English Version:

https://daneshyari.com/en/article/4598497

Download Persian Version:

https://daneshyari.com/article/4598497

Daneshyari.com