Completely positive rooted matrices

Luigi Salce
Dipartimento di Matematica, Via Trieste 63, 35121 Padova, Italy

A R T I C L E I N F O

Article history:

Received 28 October 2015
Accepted 3 May 2016
Available online 10 May 2016
Submitted by S. Fallat

MSC:

15B48
15B57
15A18
15B35

Keywords:
Doubly non-negative matrices
Completely positive matrices
Additive spectral decomposition

A B S T R A C T

The classes of k-rooted and ∞-rooted completely positive matrices are introduced. It is shown that completely positive matrices with at most two different eigenvalues are ∞-rooted, and completely positive singular ∞-rooted matrices of order 3 are characterized. Positive semidefinite matrices whose large powers are non-negative are also characterized.
© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The class $\mathcal{C} \mathcal{P}_{n}$ of completely positive matrices of order n consists of the matrices of the form $B B^{T}$, where B is an $n \times m$ real non-negative matrix; it is included in the class $\mathcal{D} \mathcal{N} \mathcal{N}_{n}$ of doubly non-negative matrices of order n, which consists of the symmetric entrywise non-negative real matrices with non-negative eigenvalues. This inclusion is an equality for $n \leq 4$, and there are examples showing that the inclusion is proper for every $n \geq 5$. We refer to the monograph by Berman and Shaked-Monderer [1] for more

[^0]information on doubly non-negative and completely positive matrices; the interested reader is referred also to the more recent papers by Bomze, Shachinger and Uchida [3], Dickinson [4], Dür [5], Hiriart-Urruty and Seeger [8].

If $A \in \mathcal{D \mathcal { N }} \mathcal{N}_{n}$, then obviously $A^{2} \in \mathcal{C} \mathcal{P}_{n}$. Since every positive semidefinite matrix A admits a unique positive semidefinite square root, denoted by \sqrt{A}, one may ask when $A \in \mathcal{C} \mathcal{P}_{n}$ implies that $\sqrt{A} \geq O$. These matrices deserve an ad hoc definition.

Definition 1.1. A doubly non-negative matrix A is called rooted if $\sqrt{A} \geq O$.
Obviously a rooted doubly non-negative matrix is completely positive. Thus, for $n \geq 5$, all matrices in $\mathcal{D N} \mathcal{N}_{n} \backslash \mathcal{C} \mathcal{P}_{n}$ are examples of non-rooted matrices. More interesting is to understand when a completely positive matrix is, or is not, rooted.

Doubly non-negative rooted matrices have already appeared in the literature. In fact, Marcus and Minc [10] proved that a doubly non-negative doubly stochastic $n \times n$ matrix $(n \geq 3)$ with all diagonal entries $\leq 1 /(n-1)$ is rooted (see Theorem 2.8, p. 127 in [1]); they also provided an example of a non-rooted doubly non-negative doubly stochastic matrix of order 3 (see Exercise 2.50, p. 129 in [1]). We will elaborate on that example in Section 4.

More recently, Shaked-Monderer proved (see the proof of Observation 1.1 in [13]) that non-negative matrices generated by Soules matrices are ∞-rooted (we refer to [15] and [6] for the definition of Soules matrices and the description of their structure). Furthermore, Reams [12] provided sufficient conditions on the diagonal elements of irreducible matrices, and on principal 2×2 minors of irreducible doubly stochastic matrices in $\mathcal{D N} \mathcal{N}_{n}$, ensuring that they are rooted; these conditions are related to eigenvalues and eigenvectors of the matrices.

Of course, we can repeat the square root process, obtaining the following notion.

Definition 1.2. For a fixed positive integer k, a doubly non-negative matrix A is called k-rooted if $A^{1 / 2^{k}} \geq O$.

So, in this terminology, the rooted matrices are exactly the 1-rooted ones. The class of k-rooted matrices of order n is denoted by $\mathcal{R}_{n}(k)$, and their intersection $\cap_{k} \mathcal{R}_{n}(k)$ is denoted by $\mathcal{R}_{n}(\infty)$. A matrix in the class $\mathcal{R}_{n}(\infty)$ is called ∞-rooted. Clearly the following inclusions hold:

$$
\mathcal{R}_{n}(\infty) \subseteq \cdots \subseteq \mathcal{R}_{n}(2) \subseteq \mathcal{R}_{n}(1) \subseteq \mathcal{C} \mathcal{P}_{n} \subseteq \mathcal{D N} \mathcal{N}_{n}
$$

Notice that, given a matrix $A \in \mathcal{D N N}_{n}$, it is immediate to check that $A \in \mathcal{C} \mathcal{P}_{n} \backslash \mathcal{R}_{n}(1)$ implies that, for any fixed $k>1, A^{2^{k}} \in \mathcal{R}_{n}(k-1) \backslash \mathcal{R}_{n}(k)$, hence a proper inclusion $\mathcal{R}_{n}(1) \subset \mathcal{C} \mathcal{P}_{n}$ gives rise to an infinite strictly descending chain

$$
\mathcal{R}_{n}(\infty) \subset \cdots \subset \mathcal{R}_{n}(2) \subset \mathcal{R}_{n}(1) \subset \mathcal{C} \mathcal{P}_{n}
$$

https://daneshyari.com/en/article/4598531

Download Persian Version:

https://daneshyari.com/article/4598531

Daneshyari.com

[^0]: E-mail address: salce@math.unipd.it.

