Extremal values of the trace norm over oriented trees

N. Agudelo ${ }^{\text {a }}$, J.A. de la Peña ${ }^{\text {b }}$, J. Rada ${ }^{\text {a,* }}$
a Instituto de Matemáticas, Universidad de Antioquia, Medellín, Colombia
${ }^{\text {b }}$ Centro de Investigación en Matemáticas, A.C. Guanajuato, Mexico

A R T I C L E I N F O

Article history:

Received 9 January 2016
Accepted 3 May 2016
Available online 10 May 2016
Submitted by R. Brualdi

MSC:

05C50

A B S T R A C T

The trace norm of the digraph D is defined as $\mathcal{N}(D)=\sum_{i=1}^{n} \sigma_{i}$, where $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{n} \geq 0$ are the singular values of the adjacency matrix A of D, i.e. the square roots of the eigenvalues of $A A^{\top}$. We find the extremal values of \mathcal{N} over the set of oriented trees and over the set of oriented paths.
© 2016 Elsevier Inc. All rights reserved.

Keywords:

Trace norm
Singular values
Oriented trees

1. Introduction

For concepts and definitions on digraphs we refer the reader to [2]. Our digraphs are simple, i.e. they have no loops nor multiple arcs. Assume that D is a digraph with set of vertices $\{1, \ldots, n\}$. The adjacency matrix $A=\left(a_{i j}\right)$ of D is the $n \times n$ matrix defined as $a_{i j}=\left\{\begin{array}{ll}1 & \text { if } i j \text { is an arc of } D \\ 0 & \text { if } i j \text { is not an arc of } D\end{array}\right.$. The trace norm of $D[7]$ is defined as

[^0]http://dx.doi.org/10.1016/j.laa.2016.05.003
0024-3795/© 2016 Elsevier Inc. All rights reserved.

Fig. 1. Oriented trees where \mathcal{N} attains extremal values.
$\mathcal{N}(D)=\sum_{i=1}^{n} \sigma_{i}$, where $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{n} \geq 0$ are the singular values of A, i.e. the square roots of the eigenvalues of $A A^{\top}$. When D is a symmetric digraph and $\lambda_{1}, \ldots, \lambda_{n}$ are the eigenvalues of A then $\sigma_{i}=\left|\lambda_{i}\right|$ for all $i=1, \ldots, n$ and $\mathcal{N}(D)=\sum_{i=1}^{n}\left|\lambda_{i}\right|$, the energy introduced by Gutman [4]. For further details on the energy of graphs we refer to [6].

In a recent paper the study of mathematical properties of \mathcal{N} over the set of digraphs was considered [1]. Specifically, lower and upper bounds for \mathcal{N} over the set of digraphs were found and a comparison between \mathcal{N} and the energy of digraphs \mathcal{E} introduced in [8] was presented. In this note we study the trace norm over the set of oriented trees. Recall that an orientation of a graph G is a digraph obtained from G by replacing every edge $u v$ of G by exactly one of the two arcs $u v$ or $v u$. An oriented graph is an orientation of a graph. Similarly, an oriented tree is an orientation of a tree. We will show that among all oriented trees with n vertices, the minimal value of \mathcal{N} is attained in exactly the two oriented star trees $\vec{K}_{1, n-1}$ and $\vec{K}_{n-1,1}$. The maximal value is attained in the oriented path $\overrightarrow{P_{n}}$ (see Fig. 1).

We also consider the extremal value problem of \mathcal{N} over oriented paths. In fact we show that \mathcal{N} reaches its minimal value in the oriented trees shown in Fig. 5.

2. Extremal values of the trace norm over oriented trees

We will denote by $\mathcal{O} \mathcal{T}(n)$ the set of all oriented trees with n vertices. First we give some examples of oriented graphs and their trace norms which will be of importance in our study of extremal values of \mathcal{N} over $\mathcal{O} \mathcal{T}(n)$.

Example 2.1. Let $\overrightarrow{P_{n}}$ be the orientation of the path P_{n} shown in Fig. 1. If A is the adjacency matrix of $\overrightarrow{P_{n}}$ then clearly $A A^{\top}=\left(\begin{array}{cc}\mathbf{I}_{(n-1) \times(n-1)} & \mathbf{0}_{(n-1) \times 1} \\ \mathbf{0}_{1 \times(n-1)} & 0\end{array}\right)$. It follows that the singular values of $\overrightarrow{P_{n}}$ are $\sigma_{1}=\sigma_{2}=\cdots=\sigma_{n-1}=1$ and $\sigma_{n}=0$. Hence $\mathcal{N}\left(\overrightarrow{P_{n}}\right)=$ $n-1$.

Example 2.2. Let $K_{r s}$ be the complete bipartite graph with vertex partition $X=$ $\left\{x_{1}, \ldots, x_{r}\right\}$ and $Y=\left\{y_{1}, \ldots, y_{s}\right\}$. Consider the (asymmetric) digraph $\vec{K}_{r s}$ obtained from $K_{r s}$ by giving the following orientation: each edge $x_{i} y_{j}$ of $K_{r s}$ is changed by an

https://daneshyari.com/en/article/4598534

Download Persian Version:
https://daneshyari.com/article/4598534

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: nagudel83@gmail.com (N. Agudelo), jap@cimat.mx (J.A. de la Peña), pablo.rada@udea.edu.co (J. Rada).

