

Extremal values of the trace norm over oriented trees

N. Agudelo^a, J.A. de la Peña^b, J. Rada^{a,*}

^a Instituto de Matemáticas, Universidad de Antioquia, Medellín, Colombia ^b Centro de Investigación en Matemáticas, A.C. Guanajuato, Mexico

INFO ARTICLE

Article history: Received 9 January 2016 Accepted 3 May 2016 Available online 10 May 2016 Submitted by R. Brualdi

MSC: 05C50

Keywords: Trace norm Singular values Oriented trees

ABSTRACT

The trace norm of the digraph D is defined as $\mathcal{N}(D) = \sum_{i=1}^{n} \sigma_i$, where $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n \geq 0$ are the singular values of the adjacency matrix A of D, i.e. the square roots of the eigenvalues of AA^{\top} . We find the extremal values of \mathcal{N} over the set of oriented trees and over the set of oriented paths. © 2016 Elsevier Inc. All rights reserved.

1. Introduction

For concepts and definitions on digraphs we refer the reader to [2]. Our digraphs are simple, i.e. they have no loops nor multiple arcs. Assume that D is a digraph with set of vertices $\{1, \ldots, n\}$. The adjacency matrix $A = (a_{ij})$ of D is the $n \times n$ matrix defined as $a_{ij} = \begin{cases} 1 & \text{if } ij \text{ is an arc of } D \\ 0 & \text{if } ij \text{ is not an arc of } D \end{cases}$. The trace norm of D [7] is defined as

Corresponding author.

E-mail addresses: nagudel83@gmail.com (N. Agudelo), jap@cimat.mx (J.A. de la Peña), pablo.rada@udea.edu.co (J. Rada).

Fig. 1. Oriented trees where $\mathcal N$ attains extremal values.

 $\mathcal{N}(D) = \sum_{i=1}^{n} \sigma_i$, where $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n \geq 0$ are the singular values of A, i.e. the square roots of the eigenvalues of AA^{\top} . When D is a symmetric digraph and $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of A then $\sigma_i = |\lambda_i|$ for all $i = 1, \ldots, n$ and $\mathcal{N}(D) = \sum_{i=1}^{n} |\lambda_i|$, the energy introduced by Gutman [4]. For further details on the energy of graphs we refer to [6].

In a recent paper the study of mathematical properties of \mathcal{N} over the set of digraphs was considered [1]. Specifically, lower and upper bounds for \mathcal{N} over the set of digraphs were found and a comparison between \mathcal{N} and the energy of digraphs \mathcal{E} introduced in [8] was presented. In this note we study the trace norm over the set of oriented trees. Recall that an orientation of a graph G is a digraph obtained from G by replacing every edge uv of G by exactly one of the two arcs uv or vu. An oriented graph is an orientation of a graph. Similarly, an oriented tree is an orientation of a tree. We will show that among all oriented trees with n vertices, the minimal value of \mathcal{N} is attained in exactly the two oriented star trees $\overrightarrow{K}_{1,n-1}$ and $\overrightarrow{K}_{n-1,1}$. The maximal value is attained in the oriented path \overrightarrow{P}_n (see Fig. 1).

We also consider the extremal value problem of \mathcal{N} over oriented paths. In fact we show that \mathcal{N} reaches its minimal value in the oriented trees shown in Fig. 5.

2. Extremal values of the trace norm over oriented trees

We will denote by $\mathcal{OT}(n)$ the set of all oriented trees with *n* vertices. First we give some examples of oriented graphs and their trace norms which will be of importance in our study of extremal values of \mathcal{N} over $\mathcal{OT}(n)$.

Example 2.1. Let $\overrightarrow{P_n}$ be the orientation of the path P_n shown in Fig. 1. If A is the adjacency matrix of $\overrightarrow{P_n}$ then clearly $AA^{\top} = \begin{pmatrix} \mathbf{I}_{(n-1)\times(n-1)} & \mathbf{0}_{(n-1)\times 1} \\ \mathbf{0}_{1\times(n-1)} & 0 \end{pmatrix}$. It follows that the singular values of $\overrightarrow{P_n}$ are $\sigma_1 = \sigma_2 = \cdots = \sigma_{n-1} = 1$ and $\sigma_n = 0$. Hence $\mathcal{N}\left(\overrightarrow{P_n}\right) = n-1$.

Example 2.2. Let K_{rs} be the complete bipartite graph with vertex partition $X = \{x_1, \ldots, x_r\}$ and $Y = \{y_1, \ldots, y_s\}$. Consider the (asymmetric) digraph \overrightarrow{K}_{rs} obtained from K_{rs} by giving the following orientation: each edge $x_i y_j$ of K_{rs} is changed by an

Download English Version:

https://daneshyari.com/en/article/4598534

Download Persian Version:

https://daneshyari.com/article/4598534

Daneshyari.com