

Contents lists available at ScienceDirect

## Linear Algebra and its Applications

www.elsevier.com/locate/laa

# The nowhere-zero eigenbasis problem for a graph



LINEAR ALGEBRA and its

oplications

Keivan Hassani Monfared<sup>a,\*</sup>, Bryan L. Shader<sup>b</sup>

<sup>a</sup> University of Calgary, Canada
 <sup>b</sup> University of Wyoming, United States

#### ARTICLE INFO

Article history: Received 14 October 2015 Accepted 18 April 2016 Available online 11 May 2016 Submitted by R. Brualdi

MSC: O5C50 A15A18 15A20

Keywords: Inverse eigenvalue problem Eigenvector Jacobian method Nowhere-zero

#### ABSTRACT

Using the implicit function theorem it is shown that for any n distinct real numbers  $\lambda_1, \lambda_2, \ldots, \lambda_n$ , and for each connected graph G of order n, there is a real symmetric matrix A whose graph is G, the eigenvalues of A are  $\lambda_1, \ldots, \lambda_n$ , and every entry in each eigenvector of A is nonzero.

© 2016 Elsevier Inc. All rights reserved.

### 1. Introduction

The graph of an  $n \times n$  real symmetric matrix  $A = [a_{ij}]$  is the (simple) graph G on n vertices  $1, 2, \ldots, n$  with edges  $\{i, j\}$  if and only if  $a_{ij} \neq 0$  and  $i \neq j$ . In the recent years considerable research has concerned the relationship between the spectrum of a symmetric matrix and its graph (for example see [3] and the references therein). The

\* Corresponding author.

E-mail addresses: k1monfared@gmail.com (K. Hassani Monfared), bshader@uwyo.edu (B.L. Shader).

 $\label{eq:http://dx.doi.org/10.1016/j.laa.2016.04.028} 0024-3795 \ensuremath{\oslash} \ensuremath{\bigcirc} \ensuremath{\otimes} \ensuremath{\bigcirc} \ensuremath{\otimes} \ensuremath{\otimes}$ 

first result we recall asserts that every graph realizes each spectrum consisting of distinct eigenvalues. We denote the multi-set of eigenvalues of A by spec(A).

**Theorem 1.1.** [3, Theorem 2.2.1] Let  $\Lambda = \{\lambda_1, \lambda_2, ..., \lambda_n\}$  be a set of n distinct real numbers and G be a graph on n vertices. Then there is a real symmetric matrix A whose graph is G and spec(A) =  $\Lambda$ .

The nowhere-zero eigenbasis problem for G, raised by Shaun Fallat [2], is an extension of the Theorem 1.1 that puts extra requirements on the matrix A, namely that none of its eigenvectors has a zero entry. Note that if G is not connected, then A will be a direct sum of matrices and hence its eigenvectors will have zero entries. Thus, it is necessary to assume G is connected. More formally, the problem we study in this paper is the following.

The nowhere-zero eigenbasis problem for G. For a given connected graph G on n vertices and given list  $\lambda_1, \lambda_2, \ldots, \lambda_n$ , of n distinct real numbers, does there exist a real symmetric matrix A whose graph is G, its eigenvalues are  $\lambda_1, \lambda_2, \ldots, \lambda_n$ , and none of the eigenvectors of A has a zero entry?

For a square matrix A and subsets  $\alpha$  and  $\beta$  of indices,  $A[\alpha, \beta]$  is the submatrix of A with rows indexed by  $\alpha$  and columns indexed by  $\beta$ . The matrix obtained from A by deleting its j-th row and j-th column is denoted by A(j). Note that if the j-th entry of an eigenvector of A is zero, then A and A(j) share the eigenvalue corresponding to that eigenvector. The converse is also true; namely, if A and A(j) share an eigenvalue  $\lambda$ , then there is an eigenvector of A corresponding to  $\lambda$  whose j-th entry is zero. To see this, assume j = 1 and note that if  $\boldsymbol{x}$  and  $\boldsymbol{y}$  are eigenvectors of A(1) and A, respectively, corresponding to the eigenvalue  $\lambda$ , then either the first entry of  $\boldsymbol{x}$  is zero, or  $A[\{2, \ldots, n\}, \{1\}]$  is in the column space of  $A(1) - \lambda I$ , which along with the symmetry of A imply that

$$\begin{bmatrix} 0 \\ \boldsymbol{y} \end{bmatrix}$$

is an eigenvector of A corresponding to  $\lambda$ . From this perspective, the nowhere-zero eigenbasis problem concerns the existence of a real symmetric matrix A with prescribed spectrum and graph such that  $\sigma(A) \cap \sigma(A(j)) = \emptyset$  for each j.

The Cauchy interlacing inequalities guarantee that  $\sigma(A(j))$  interlaces  $\sigma(A)$ , that is, if  $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$  are eigenvalues of A and  $\mu_1 \leq \mu_2 \leq \cdots \leq \mu_{n-1}$  are eigenvalues of A(j), then

$$\lambda_i \le \mu_i \le \lambda_{i+1}, \text{ for } i = 1, 2, \dots, n-1.$$

$$\tag{1}$$

Thus the condition  $\sigma(A) \cap \sigma(A(j)) = \emptyset$  is equivalent to the condition that  $\sigma(A(j))$  strictly interlaces  $\sigma(A)$ , that is, all the inequalities in (1) are strict. Hence, from this perspective,

Download English Version:

https://daneshyari.com/en/article/4598537

Download Persian Version:

https://daneshyari.com/article/4598537

Daneshyari.com