The nowhere-zero eigenbasis problem for a graph

Keivan Hassani Monfared ${ }^{\text {a,* }}$, Bryan L. Shader ${ }^{\text {b }}$
a University of Calgary, Canada
b University of Wyoming, United States

A R T I C L E I N F O

Article history:

Received 14 October 2015
Accepted 18 April 2016
Available online 11 May 2016
Submitted by R. Brualdi

MSC:

O5C50
A15A18
15A20

Keywords:
Inverse eigenvalue problem
Eigenvector
Jacobian method
Nowhere-zero

Abstract

Using the implicit function theorem it is shown that for any n distinct real numbers $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$, and for each connected graph G of order n, there is a real symmetric matrix A whose graph is G, the eigenvalues of A are $\lambda_{1}, \ldots, \lambda_{n}$, and every entry in each eigenvector of A is nonzero.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The graph of an $n \times n$ real symmetric matrix $A=\left[a_{i j}\right]$ is the (simple) graph G on n vertices $1,2, \ldots, n$ with edges $\{i, j\}$ if and only if $a_{i j} \neq 0$ and $i \neq j$. In the recent years considerable research has concerned the relationship between the spectrum of a symmetric matrix and its graph (for example see [3] and the references therein). The

[^0]first result we recall asserts that every graph realizes each spectrum consisting of distinct eigenvalues. We denote the multi-set of eigenvalues of A by $\operatorname{spec}(A)$.

Theorem 1.1. [3, Theorem 2.2.1] Let $\Lambda=\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\}$ be a set of n distinct real numbers and G be a graph on n vertices. Then there is a real symmetric matrix A whose graph is G and $\operatorname{spec}(A)=\Lambda$.

The nowhere-zero eigenbasis problem for G, raised by Shaun Fallat [2], is an extension of the Theorem 1.1 that puts extra requirements on the matrix A, namely that none of its eigenvectors has a zero entry. Note that if G is not connected, then A will be a direct sum of matrices and hence its eigenvectors will have zero entries. Thus, it is necessary to assume G is connected. More formally, the problem we study in this paper is the following.

The nowhere-zero eigenbasis problem for G. For a given connected graph G on n vertices and given list $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$, of n distinct real numbers, does there exist a real symmetric matrix A whose graph is G, its eigenvalues are $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$, and none of the eigenvectors of A has a zero entry?

For a square matrix A and subsets α and β of indices, $A[\alpha, \beta]$ is the submatrix of A with rows indexed by α and columns indexed by β. The matrix obtained from A by deleting its j-th row and j-th column is denoted by $A(j)$. Note that if the j-th entry of an eigenvector of A is zero, then A and $A(j)$ share the eigenvalue corresponding to that eigenvector. The converse is also true; namely, if A and $A(j)$ share an eigenvalue λ, then there is an eigenvector of A corresponding to λ whose j-th entry is zero. To see this, assume $j=1$ and note that if \boldsymbol{x} and \boldsymbol{y} are eigenvectors of $A(1)$ and A, respectively, corresponding to the eigenvalue λ, then either the first entry of \boldsymbol{x} is zero, or $A[\{2, \ldots, n\},\{1\}]$ is in the column space of $A(1)-\lambda I$, which along with the symmetry of A imply that

$$
\left[\begin{array}{l}
0 \\
\boldsymbol{y}
\end{array}\right]
$$

is an eigenvector of A corresponding to λ. From this perspective, the nowhere-zero eigenbasis problem concerns the existence of a real symmetric matrix A with prescribed spectrum and graph such that $\sigma(A) \cap \sigma(A(j))=\emptyset$ for each j.

The Cauchy interlacing inequalities guarantee that $\sigma(A(j))$ interlaces $\sigma(A)$, that is, if $\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n}$ are eigenvalues of A and $\mu_{1} \leq \mu_{2} \leq \cdots \leq \mu_{n-1}$ are eigenvalues of $A(j)$, then

$$
\begin{equation*}
\lambda_{i} \leq \mu_{i} \leq \lambda_{i+1}, \text { for } i=1,2, \ldots, n-1 \tag{1}
\end{equation*}
$$

Thus the condition $\sigma(A) \cap \sigma(A(j))=\emptyset$ is equivalent to the condition that $\sigma(A(j))$ strictly interlaces $\sigma(A)$, that is, all the inequalities in (1) are strict. Hence, from this perspective,

https://daneshyari.com/en/article/4598537

Download Persian Version:

https://daneshyari.com/article/4598537

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: k1monfared@gmail.com (K. Hassani Monfared), bshader@uwyo.edu (B.L. Shader).

