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Here we use row sum generating functions and alternating 
sum generating functions to characterize Riordan arrays and 
subgroups of the Riordan group. Numerous applications and 
examples are presented which include the construction of 
Girard–Waring type identities. We also show the extensions 
to weighted sum (generating) functions, called the expected 
value (generating) functions of Riordan arrays.
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1. Introduction

Riordan arrays are infinite, lower triangular matrices defined by two generating func-
tions. They form a group, called the Riordan group (see Shapiro et al. [15]). More 
formally, consider the set of formal power series (f.p.s.) F = R[[t] ]; the order of f(t) ∈ F , 
f(t) =

∑∞
k=0 fkt

k (fk ∈ R), is the minimal number r ∈ N such that fr �= 0. The set 
of formal power series of order r is denoted by Fr. It is known that F0 is the set of 
invertible f.p.s. and F1 is the set of compositionally invertible f.p.s., that is, the f.p.s. 
f(t) for which the compositional inverse f̄(t) exists such that f(f̄(t)) = f̄(f(t)) = t. 
Let d(t) ∈ F0 and h(t) ∈ F1; the pair (d(t), h(t)) defines the (proper) Riordan array 
D = (dn,k)n,k≥0 = (d(t), h(t)), where

dn,k = [tn]d(t)h(t)k (1)

or, in other words, d(t)h(t)k is the generating function for the entries of column k.
Let [f0, f1, f2, . . .]T be a column vector with f(t) =

∑
n≥0 fnt

n. It is convenient to 
switch freely between a sequence, a sequence written as a column vector, and the ordinary 
generating function for that sequence. We then have the fundamental theorem of Riordan 
arrays

(d(t), h(t)) [f0, f1, f2, . . .]T = (d(t), h(t))f(t) = d(t)f(h(t)). (2)

It follows quickly that the usual row-by-column product of two Riordan arrays is also a 
Riordan array:

(d1(t), h1(t)) ∗ (d2(t), h2(t)) = (d1(t)d2(h1(t)), h2(h1(t))). (3)

The Riordan array I = (1, t) is everywhere 0 except for all 1’s on the main diagonal; it can 
be easily proved that I acts as an identity for this product, that is, (1, t) ∗ (d(t), h(t)) =
(d(t), h(t)) ∗ (1, t) = (d(t), h(t)). Let (d(t), h(t)) be a Riordan array. Then its inverse is

(d(t), h(t))−1 =
(

1
d(h̄(t))

, h̄(t)
)
, (4)

where h̄(t) is the compositional inverse of h(t). In this way, the set R of proper Riordan 
arrays forms a group (see [15]).

Multiplying a matrix by the column vector [1, 1, 1, . . .]T yields the column of row sums 
which we denote as R+. Since f(t) = 1/(1 − t) is the corresponding generating function, 
then (2) presents the generating function R+ of the row sum sequence of the Riordan 
array (d(t), h(t)) (see [14]), i.e.,

R+(t) := (d(t), h(t)) 1
1 − t

= d(t)
1 − h(t) . (5)
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