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We study isospectrality for mixed Dirichlet–Neumann bound-
ary conditions and extend the previously derived graph-
theoretic formulation of the transplantation method. Led by 
the theory of Brownian motion, we introduce vertex-colored 
and edge-colored line graphs that give rise to block diago-
nal transplantation matrices. In particular, we rephrase the 
transplantation method in terms of representations of free 
semigroups and provide a method for generating adjacency 
cospectral weighted directed graphs.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Inverse spectral geometry studies the extend to which a geometric object, e.g., a Eu-
clidean domain, is determined by the spectral data of an associated operator, e.g., the 
eigenvalues of the Laplace operator with suitable boundary conditions. This objective 
is beautifully summarized by Kac’s influential question “Can one hear the shape of a 
drum?” [1]. Recently, the author [2] studied broken drums each of which is modeled as 
a compact flat manifold M with boundary ∂M = ∂DM ∪ ∂NM , where ∂DM and ∂NM
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Fig. 1. Graph representations of a pair of transplantable tiled manifolds with mixed Dirichlet–Neumann 
boundary conditions. Solid boundary segments carry Dirichlet conditions and dashed ones carry Neumann 
conditions. The adjacency matrices on the right belong to the respective first graph on the left. The types of 
line (straight, wavy, zigzag) represent the edge colors (s, w, z) of G and G′. The graphs Lec(G) and Lec(G′)
have edge colors (a, b, c) = ({s, w}, {w, z}, {s, z}).

represent the attached and unattached parts of the drumhead, respectively. The audible 
frequencies of such a broken drum are determined by the eigenvalues of the Laplace–
Beltrami operator ΔM of M with Dirichlet and Neumann boundary conditions along 
∂DM and ∂NM , respectively. Provided that ∂M is sufficiently smooth, this operator 
has discrete spectrum given by an unbounded non-decreasing sequence of non-negative 
eigenvalues.

Using number-theoretic ideas, Sunada [3] developed a celebrated method involving 
group actions to construct isospectral manifolds, i.e., manifolds whose spectra coin-
cide. It ultimately allowed Gordon et al. [4] to answer Kac’s question in the negative. 
Buser [5] distilled the combinatorial core of Sunada’s method into the transplantation 
method, which involves tiled manifolds that are composed of identical building blocks, 
e.g., M and M ′ in Fig. 1a. In essence, if ϕ is an eigenfunction of ΔM that satisfies the 
desired boundary conditions, then its restrictions (ϕi)4i=1 to the building blocks of M
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