Normal matrices subordinate to a tree and flat portions of the field of values

Charles R. Johnson ${ }^{\text {a }}$, Ilya M. Spitkovsky ${ }^{\text {a,b, }, *, 1}$, Mirjana Stevanovic ${ }^{\text {b }}$, Morrison Turnansky ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Mathematics, College of William and Mary, Williamsburg, VA 23187, USA
${ }^{\text {b }}$ Division of Science, New York University Abu Dhabi (NYUAD), Saadiyat Island, P.O. Box 129188 Abu Dhabi, United Arab Emirates

A R T I C L E I N F O

Article history:

Received 5 March 2016
Accepted 3 June 2016
Available online 7 June 2016
Submitted by R. Brualdi

MSC:

05C50
15A60
15B57

Keywords:
Field of values
Flat boundary portion
Normal matrix
Tree
Undirected graph of a matrix

A B S T R A C T

Matrices subordinate to trees are considered. An efficient normality characterization for any such matrix is given, and several consequences (not valid for general normal matrices) of it are established. In addition, the existence (and enumeration) of flat portions on the boundary of the field of values of matrices subordinate to a tree is characterized.
© 2016 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

Let M_{n} denote the set of all n-by- n matrices with the entries in \mathbb{C}. A matrix $A=$ $\left(a_{i j}\right)_{i, j=1}^{n} \in M_{n}$ is normal if it commutes with its conjugate transpose A^{*} :

$$
\begin{equation*}
A A^{*}=A^{*} A . \tag{1.1}
\end{equation*}
$$

The normality of A can be restated in many equivalent ways (see e.g. [6]), the most direct of which being the entry-wise form of (1.1):

$$
\begin{equation*}
\sum_{k=1}^{n} a_{i k} \overline{a_{j k}}=\sum_{k=1}^{n} a_{k j} \overline{a_{k i}} \tag{1.2}
\end{equation*}
$$

for $i, j=1, \ldots, n$.
It was observed in [2, Lemma 5.1] that for tridiagonal matrices

$$
\left[\begin{array}{ccccc}
a_{1} & b_{1} & 0 & \ldots & 0 \tag{1.3}\\
c_{1} & a_{2} & b_{2} & \ddots & \vdots \\
0 & c_{2} & a_{3} & \ddots & 0 \\
\vdots & \ddots & \ddots & \ddots & b_{n-1} \\
0 & \ldots & 0 & c_{n-1} & a_{n}
\end{array}\right]
$$

the normality criterion (1.2) simplifies substantially. Namely:

Proposition 1. The matrix (1.3) is normal if and only if $\left|b_{j}\right|=\left|c_{j}\right|$ for all $j=1, \ldots, n-1$, $\arg b_{j}+\arg c_{j}$ does not depend on j for all consecutive j such that $b_{j} \neq 0$, and $2 \arg \left(a_{j+1}-a_{j}\right)=\arg b_{j}+\arg c_{j}$ whenever $a_{j} \neq a_{j+1}$.

In particular, if the normal matrix (1.3) is unreduced, that is, there are no zero pairs $\left\{b_{j}, c_{j}\right\}$ among its off diagonal entries, then the value of $\arg b_{j}+\arg c_{j}$ is constant throughout; see [1, Lemma 1] for the precise statement and its applications.

A similar, but nevertheless somewhat different, result holds for arrowhead matrices

$$
\left[\begin{array}{ccccc}
a_{1} & 0 & 0 & \ldots & b_{1} \tag{1.4}\\
0 & a_{2} & 0 & \cdots & b_{2} \\
0 & 0 & a_{3} & \cdots & b_{3} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
c_{1} & c_{2} & c_{3} & \cdots & a_{n}
\end{array}\right],
$$

all non-zero entries of which are located on the main diagonal and in the last row and column. This fact was obtained in a Capstone project of the third author (supervised by the second author), and it is as follows:

https://daneshyari.com/en/article/4598560

Download Persian Version:
https://daneshyari.com/article/4598560

Daneshyari.com

[^0]: * Corresponding author at: Division of Science, New York University Abu Dhabi (NYUAD), Abu Dhabi, 129188, United Arab Emirates.

 E-mail addresses: crjohn@wm.edu (C.R. Johnson), ilya@math.wm.edu, ims2@nyu.edu, imspitkovsky@gmail.com (I.M. Spitkovsky), ms6400@nyu.edu (M. Stevanovic), maturnansky@email.wm.edu (M. Turnansky).
 ${ }^{1}$ The second author was supported in part by the Plumeri Award for Faculty Excellence from the College of William and Mary and by Faculty Research funding from the Division of Science and Mathematics, New York University Abu Dhabi.

