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We show that if a map φ on the set of positive definite matrices 
satisfies

det(A + B) = det(φ(A) + φ(B)), or

tr(AB−1) = tr(φ(A)φ(B)−1) with detφ(I) = 1,

then φ is of the form φ(A) = M∗AM or φ(A) = M∗AtM
for some invertible matrix M with det(M∗M) = 1. We also 
characterize the map φ : S → S preserving the similar trace 
equality or the determinant equality

det(tA + (1 − t)B) = det(tφ(A) + (1 − t)φ(B)), t ∈ [0, 1],
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in S, where S denotes the set of complex matrices, symmetric 
matrices, or upper triangular matrices, respectively.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Over the last decades, one of the most active research topics in matrix theory is the 
linear preserver problem [1,11,13,15]. Many interesting results about preserver problems 
in different matrix algebras were discussed and obtained. They included preservers on de-
terminant, eigenvalue, spectrum, permanent, rank, commutativity, product, trace, norm, 
etc.

In this paper, we study the relationship between the maps preserving determinants 
and trace equalities, and characterize this kind of maps. Given n ∈ Z

+, let Mn (resp., Hn, 
Pn, Pn, Sn, Tn, Dn) be the set of n ×n complex (resp., hermitian, positive semi-definite, 
positive definite, symmetric, upper triangular, diagonal) matrices. For S = Sn, Mn, Tn, 
or Pn, we show that a map φ on S satisfying trace equalities tr(φ(A)φ(B)−1) = tr(AB−1)
or tr(φ(A)φ(B)) = tr(AB) is linear (Lemmas 2.3 and 2.4). Then we use the result to 
show that

(1) A map φ : Pn → Pn satisfying

det(φ(A) + φ(B)) = det(A + B), A,B ∈ Pn (1.1)

or tr(φ(A)φ(B)−1) = tr(AB−1) with detφ(I) = 1 is of the form φ(A) = M∗AM or 
φ(A) = M∗AtM for some invertible matrix M with det(M∗M) = 1 (Theorem 3.1). 
Here and throughout this paper At denotes the transpose of A.

(2) For S = Sn, Mn, or Tn, and the map φ : S → S, the trace equality tr(φ(A)φ(B)−1) =
tr(AB−1) with detφ(I) = 1 is equivalent to the determinant equality det(tφ(A) +
(1 − t)φ(B)) = det(tA + (1 − t)B) for all t ∈ [0, 1] which leads to the explicit forms 
of φ (Theorems 4.1, 5.1, 6.1). This enriches Dolinar, Šemrl, Tan, Wang, Cao, and 
Tang’s results [2,4,16].

The original determinant preserving problem came from Frobenius [6] in 1897. Let 
φ : Mn → Mn be a linear map satisfying

det(φ(A)) = det(A), A ∈ Mn. (1.2)

Then there exist M , N ∈ Mn with det(MN) = 1 such that either

φ(A) = MAN, A ∈ Mn, (1.3)



Download English Version:

https://daneshyari.com/en/article/4598571

Download Persian Version:

https://daneshyari.com/article/4598571

Daneshyari.com

https://daneshyari.com/en/article/4598571
https://daneshyari.com/article/4598571
https://daneshyari.com

