

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

Rank in Banach algebras: A generalized Cayley–Hamilton theorem

LINEAR

lications

G. Braatvedt, R. Brits*, F. Schulz

Department of Mathematics, University of Johannesburg, Aucklandpark Campus, Aucklandpark 6000, South Africa

ARTICLE INFO

Article history: Received 24 March 2016 Accepted 10 June 2016 Available online 16 June 2016 Submitted by P. Semrl

MSC: 46H05 46H10

Keywords: Socle Rank Determinant Cayley-Hamilton theorem

ABSTRACT

Let A be a semisimple Banach algebra with non-trivial, and possibly infinite-dimensional socle. Addressing a problem raised in [5, p. 1399], we first define a characteristic polynomial for elements belonging to the socle, and we then show that a Generalized Cayley–Hamilton Theorem holds for the associated polynomial. The key arguments leading to the main result follow from the observation that a purely spectral approach to the theory of the socle carries alongside it an efficient method of dealing with relativistic problems associated with infinite-dimensional socles.

@ 2016 Elsevier Inc. All rights reserved.

1. The characteristic polynomial

Let A be a complex, semisimple Banach algebra with identity element **1** and invertible group A^{-1} . For $x \in A$ denote $\sigma_A(x) := \{\lambda \in \mathbb{C} : \lambda \mathbf{1} - x \notin A^{-1}\}$, and $\sigma'_A(x) := \sigma_A(x) \setminus \{0\}$. If the underlying algebra is clear from the context, then we shall agree to omit the subscript A in the notation $\sigma_A(x)$ and $\sigma'_A(x)$. This convention will also be followed in

^{*} Corresponding author.

E-mail addresses: gabraatvedt@uj.ac.za (G. Braatvedt), rbrits@uj.ac.za (R. Brits), francoiss@uj.ac.za (F. Schulz).

the forthcoming definitions of rank, trace, determinant, etc. As in [5], following Aupetit and Mouton in [2], we define the rank of $a \in A$ by

$$\operatorname{rank}_{A}(a) = \sup_{x \in A} \#\sigma'(xa) \le \infty, \tag{1.1}$$

where the symbol #K denotes the number of distinct elements in a set $K \subseteq \mathbb{C}$. It can be shown [2, Corollary 2.9] that the socle, written $\operatorname{soc}(A)$, of a semisimple Banach algebra Acoincides with the collection $\mathcal{F} := \{a \in A : \operatorname{rank}(a) < \infty\}$ of finite-rank elements. With respect to (1.1) it is further useful to know that $\sigma'(xa) = \sigma'(ax)$ (Jacobson's Lemma). If $x \in A$ is such that $\#\sigma'(xa) = \operatorname{rank}(a)$, then we say a assumes its rank at x. An important fact in this regard is that, for each $a \in \operatorname{soc}(A)$, the set

$$E_A(a) = \{x \in A : \#\sigma'(xa) = \operatorname{rank}(a)\}$$
(1.2)

is dense and open in A [2, Theorem 2.2]. If $a \in \text{soc}(A)$ assumes its rank at 1 then a is said to be a maximal finite-rank element. Maximal finite-rank elements are important because they can be "diagonalized" [2, Theorem 2.8]. That is, if $a \in \text{soc}(A)$ satisfies $\text{rank}(a) = \#\sigma'(a) = n$, then a can be expressed as

$$a = \lambda_1 p_1 + \dots + \lambda_n p_n,$$

where: the λ_i are the distinct nonzero spectral values of a; and the p_i the corresponding Riesz projections, all of which are minimal (and hence rank one). Furthermore, the collection of maximal finite-rank elements is dense in $\operatorname{soc}(A)$.

For $a \in \text{soc}(A)$, Aupetit and Mouton now use the "spectral rank" in (1.1) to define the *trace* and *determinant* as:

$$\operatorname{tr}_{A}(a) = \sum_{\lambda \in \sigma(a)} \lambda \, m(\lambda, a) \tag{1.3}$$

$$\det_A(a+1) = \prod_{\lambda \in \sigma(a)} (\lambda+1)^{m(\lambda,a)}$$
(1.4)

where $m(\lambda, a)$ is the multiplicity of a at λ . A brief description of the notion of multiplicity in the abstract case goes as follows (for particular details one should consult [2]): Let $a \in \operatorname{soc}(A), \lambda \in \sigma(a)$ and let V_{λ} be an open disk centered at λ such that V_{λ} contains no other points of $\sigma(a)$. In [2, pp. 119–120] it is shown that there exists an open ball, say $U \subset A$, centered at **1** such that $\# [\sigma(xa) \cap V_{\lambda}]$ is constant as x runs through $E(a) \cap U$. This constant integer is the multiplicity of a at λ . If $\lambda \neq 0$ then one can moreover prove that $m(\lambda, a)$ is the rank of the Riesz projection associated to the pair (λ, a) . If a is a maximal finite-rank element then $m(\lambda, a) = 1$ [2, p. 120].

In the operator case, $A = \mathcal{L}(X)$, where X is a Banach space, the formulas in (1.1), (1.3), and (1.4) can be shown to coincide with the respective classical operator definitions.

Download English Version:

https://daneshyari.com/en/article/4598572

Download Persian Version:

https://daneshyari.com/article/4598572

Daneshyari.com