On graphs with just three distinct eigenvalues

Peter Rowlinson ${ }^{1}$
Mathematics and Statistics Group, Institute of Computing Science and Mathematics, University of Stirling, Scotland FK9 4LA, United Kingdom

A R T I C L E I N F O

Article history:

Received 6 November 2015
Accepted 17 June 2016
Available online 21 June 2016
Submitted by R. Brualdi

MSC:

05C50

Keywords:

Main eigenvalue
Minimum degree
Strongly regular graph
Symmetric 2-design
Vertex-deleted subgraph

Abstract

Let G be a connected non-bipartite graph with exactly three distinct eigenvalues ρ, μ, λ, where $\rho>\mu>\lambda$. In the case that G has just one non-main eigenvalue, we find necessary and sufficient spectral conditions on a vertex-deleted subgraph of G for G to be the cone over a strongly regular graph. Secondly, we determine the structure of G when just μ is non-main and the minimum degree of G is $1+\mu-\lambda \mu$: such a graph is a cone over a strongly regular graph, or a graph derived from a symmetric 2-design, or a graph of one further type.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Let G be a graph of order n with $(0,1)$-adjacency matrix A. An eigenvalue σ of A is said to be an eigenvalue of G, and σ is a main eigenvalue if the eigenspace $\mathcal{E}_{A}(\sigma)$ is not orthogonal to the all- 1 vector in \mathbb{R}^{n}. Always the largest eigenvalue, or index, of G is a main eigenvalue, and it is the only main eigenvalue if and only if G is regular. We say that G is an integral graph if every eigenvalue of G is an integer. We use the

[^0]notation of the monograph [5], where the basic properties of graph spectra can be found in Chapter 1.

Let \mathcal{C}_{1} be the class of connected graphs with just three distinct eigenvalues, and let \mathcal{C}_{2} be the class of connected graphs with exactly two main eigenvalues. It is an open problem to determine all the graphs in \mathcal{C}_{1}, and another open problem to determine all the graphs in \mathcal{C}_{2}. Here we investigate graphs in $\mathcal{C}_{1} \cap \mathcal{C}_{2}$. From [6, Propositions 2 and 3] we know that if G is a non-integral graph in \mathcal{C}_{1} then either G is complete bipartite or the two smaller eigenvalues of G are algebraic conjugates. In the latter case, G has exactly 1 or 3 main eigenvalues, and so a graph in $\mathcal{C}_{1} \cap \mathcal{C}_{2}$ is either integral or complete bipartite.

The class \mathcal{C}_{1} contains all connected non-complete strongly regular graphs; moreover it is known that if H is a strongly regular graph of order n with eigenvalues $\nu>\mu>\lambda$ then the cone $K_{1} \nabla H$ lies in \mathcal{C}_{1} if and only if $\lambda(\nu-\lambda)=-n$ (see [8] and Lemma 2.1 below). We shall see in Section 2 that the condition $\lambda(\nu-\lambda)=-n$ is equivalent to the condition $\nu=\mu(1-\lambda)$, and that when this condition is satisfied we have $K_{1} \nabla H \in \mathcal{C}_{1} \cap \mathcal{C}_{2}$. There are infinitely many strongly regular graphs which satisfy the condition (see [8, Proposition 7.1]); examples include the Petersen graph ($\mu=1, \lambda=-2$), the Gewirtz graph $(\mu=2, \lambda=-4)$ and the Chang graphs $(\mu=4, \lambda=-2)$.

Now let G be a non-bipartite graph in $\mathcal{C}_{1} \cap \mathcal{C}_{2}$ with spectrum $\rho, \mu^{(k)}, \lambda^{(l)}$ where $\rho>$ $\mu>\lambda$. In Section 3, we prove that the following are equivalent: (a) G is the cone over a strongly regular graph, (b) G has a vertex-deleted subgraph with just three distinct eigenvalues, (c) G has a vertex-deleted subgraph with index $\nu=\mu(1-\lambda)$. In particular, for $G \in \mathcal{C}_{1} \cap \mathcal{C}_{2}$, application of the condition $\nu=\mu(1-\lambda)$ is not confined to a strongly regular graph H such that $G=K_{1} \nabla H$.

We note that $\mathcal{C}_{1} \cap \mathcal{C}_{2}$ also contains the graphs constructed by van Dam [6] from a symmetric $2-\left(q^{3}-q+1, q^{2}, q\right)$ design \mathcal{D} : such a graph is obtained from the incidence graph of \mathcal{D} by adding an edge between each pair of blocks. We refer to such graphs as graphs of symmetric type; they exist whenever q is a prime power and there exists a projective plane of order $q-1[7]$. Their eigenvalues are $q^{3}, q-1,-q$ with multiplicities $1, q^{3}-q, q^{3}+1$ respectively. These graphs share with the cones described above the properties that μ is non-main and $1+\mu-\mu \lambda=\delta(G)$, the minimum degree in G. In Section 4, we determine the structure of all graphs in $\mathcal{C}_{1} \cap \mathcal{C}_{2}$ with these properties.

2. Preliminaries

Our first proof begins with a short derivation of the condition $\lambda(\nu-\lambda)=-n$, which was obtained by other means in [8, Proposition 6.1(b)].

Lemma 2.1. Let H be a strongly regular graph of order n with spectrum $\nu, \mu^{(s)}, \lambda^{(t)}$, where $\nu>\mu>\lambda$. Then $K_{1} \nabla H$ has just three distinct eigenvalues if and only if $\lambda(\nu-\lambda)=-n$, equivalently $\nu=\mu(1-\lambda)$. In this situation, $K_{1} \nabla H$ has spectrum $\rho, \mu^{(s)}, \lambda^{(t+1)}$, where $\rho=\nu-\lambda$, and the main eigenvalues of $K_{1} \nabla H$ are ρ and λ.

https://daneshyari.com/en/article/4598576

Download Persian Version:

https://daneshyari.com/article/4598576

Daneshyari.com

[^0]: E-mail address: p.rowlinson@stirling.ac.uk.
 ${ }^{1}$ Tel.: +441786 467468; fax: +441786464551 .

