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We consider the problem of determining l(r, a), the maximal 
dimension of a subspace of a × a matrices of rank r. We 
first review, in the language of vector bundles, the known 
results. Then using known facts on uniform bundles we prove 
some new results and make a conjecture. Finally we determine 
l(r; a) for every r, 1 ≤ r ≤ a, when a ≤ 10, showing that our 
conjecture holds true in this range.
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0. Introduction

Let A, B be k-vector spaces of dimensions a, b (k algebraically closed, of characteristic 
zero). A sub-vector space M ⊂ L(A, B) is said to be of (constant) rank r if every 
f ∈ M, f �= 0, has rank r. The question considered in this paper is to determine
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l(r, a, b) := max {dimM | M ⊂ L(A, B) has rank r}. This problem has been studied 
some time ago by various authors [22,20,4,9] and has been recently reconsidered, espe-
cially in its (skew) symmetric version [17,18,16,5].

It is known, at least since [20], that to give a subspace M of constant rank r, dimension 

n +1, is equivalent to give an exact sequence: 0 → F → a.O(−1) ψ→ b.O → E → 0, on P
n, 

where F, E are vector bundles of ranks (a − r), (b − r). Our starting point is to observe 
that the bundle E := Im(ψ), of rank r, is uniform, of splitting type (−1c, 0r−c), where 
c := c1(E) (Lemma 2). This had been previously observed (but not really exploited) in 
the cases of spaces of symmetric or skew-symmetric maps [17]. This allows us to apply 
the known results (and conjectures) on uniform bundles.

This paper is organized as follows. In the first section we recall some basic facts and 
fix the notations. Then in Section two, we set a = b to fix the ideas and we survey the 
known results (at least those we are aware of), giving a quick, uniform (!) treatment 
in the language of vector bundles. In Section three, using known results on uniform 
bundles, we obtain a new bound on l(r; a) in the range (2a + 2)/3 > r > (a + 2)/2 (as 
well as some other results, see Theorem 18). By the way we don’t expect this bound 
to be sharp. Indeed by “translating” (see Proposition 17) a long standing conjecture on 
uniform bundles (Conjecture 1), we conjecture that l(r; a) = a − r + 1 in this range (see 
Conjecture 2). Finally, with some ad hoc arguments, we show in the last section, that 
our conjecture holds true for a ≤ 10 (actually we determine l(r; a) for every r, 1 ≤ r ≤ a, 
when a ≤ 10).

1. Generalities

Following [20], to give M ⊂ Hom(A, B), a sub-space of constant rank r, with 
dim(M) = n + 1, is equivalent to give on Pn, an exact sequence:

0 FM a.O(−1)
ψM

b.O EM 0

EM

(1)

where EM = Im(ψM ), FM , EM are vector bundles of ranks r, a − r, b − r (in the sequel 
we will drop the index M if no confusion can arise).

Indeed the inclusion i : M ↪→ Hom(A, B) is an element of Hom(M, A∨ ⊗ B) �
M∨ ⊗ A∨ ⊗ B and can be seen as a morphism ψ : A ⊗ O → B ⊗ O(1) on P(M) (here 
P(M) is the projective space of lines of M). At every point of P(M), ψ has rank r, so 
the image, the kernel and the cokernel of ψ are vector bundles.

A different (but equivalent) description goes as follows: we can define ψ : A ⊗O(−1) →
B ⊗O on P(M), by v ⊗ λf → λf(v).

The vector bundle EM is of a particular type.
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