

Contents lists available at ScienceDirect

## Linear Algebra and its Applications

www.elsevier.com/locate/laa

## Cospectral digraphs from locally line digraphs



LINEAR

lications

### C. Dalfó<sup>a,\*</sup>, M.A. Fiol<sup>b</sup>

 <sup>a</sup> Departament de Matemàtiques, Universitat Politècnica de Catalunya, Barcelona, Catalonia
<sup>b</sup> Barcelona Graduate School of Mathematics, Barcelona, Catalonia

#### A R T I C L E I N F O

Article history: Received 13 November 2015 Accepted 10 March 2016 Available online 19 March 2016 Submitted by R. Brualdi

MSC: 05C20 05C50

Keywords: Digraph Adjacency matrix Spectrum Cospectral digraph Diameter De Bruijn digraph Kautz digraph

#### ABSTRACT

A digraph  $\Gamma = (V, E)$  is a line digraph when every pair of vertices  $u, v \in V$  have either equal or disjoint in-neighborhoods. When this condition only applies for vertices in a given subset (with at least two elements), we say that  $\Gamma$  is a locally line digraph. In this paper we give a new method to obtain a digraph  $\Gamma'$  cospectral with a given locally line digraph  $\Gamma$  with diameter D, where the diameter D' of  $\Gamma'$  is in the interval [D-1, D+1]. In particular, when the method is applied to De Bruijn or Kautz digraphs, we obtain cospectral digraphs with the same algebraic properties that characterize the formers.

© 2016 Elsevier Inc. All rights reserved.

#### 1. Preliminaries

In this section we recall some basic terminology and simple results concerning digraphs and their spectra. For the concepts and/or results not presented here, we refer the reader

\* Corresponding author. *E-mail addresses:* cristina.dalfo@upc.edu (C. Dalfó), miguel.angel.fiol@upc.edu (M.A. Fiol).

 $\label{eq:http://dx.doi.org/10.1016/j.laa.2016.03.014} 0024-3795 \ensuremath{\oslash} \ensuremath{\mathbb{C}} \ensuremath{2016} \ensuremath{\mathbb{C}} \ensuremath{2016} \ensuremath{\mathbb{C}} \ensuremath{2016} \ensuremath{\mathbb{C}} \e$ 



Fig. 1. Scheme of the sets of Theorem 2.1. The arcs that change from  $\Gamma$  to  $\Gamma'$  are represented with a thick line.

to some of the basic textbooks and papers on the subject; for instance, Chartrand and Lesniak [1] and Diestel [3].

Through this paper,  $\Gamma = (V, E)$  denotes a digraph, with set of vertices  $V = V(\Gamma)$ and set of arcs (or directed edges)  $E = E(\Gamma)$ , that is strongly connected (namely, every vertex is connected to any other vertex by traversing the arcs in their corresponding direction). An arc from vertex u to vertex v is denoted by either (u, v) or  $u \to v$ . As usual, we call *loop* an arc from a vertex to itself,  $u \to u$ , and *digon* to two opposite arcs joining a pair of vertices,  $u \rightleftharpoons v$ . The set of vertices adjacent to and from  $v \in V$  is denoted by  $\Gamma^-(v)$  and  $\Gamma^+(v)$ , respectively. Such vertices are referred to as *in-neighbors* and *out-neighbors* of v, respectively. Moreover,  $\delta^-(v) = |\Gamma^-(v)|$  and  $\delta^+(v) = |\Gamma^+(v)|$  are the *in-degree* and *out-degree* of vertex v, and  $\Gamma$  is *d-regular* when  $\delta^+(v) = \delta^-(v) = d$ for any  $v \in V$ . Similarly, given  $U \subset V$ ,  $\Gamma^-(U)$  and  $\Gamma^+(U)$  represent the sets of vertices adjacent to and from (the vertices of) U. Given two vertex subsets  $X, Y \subset V$ , the subset of arcs from X to Y is denoted by e(X, Y).

In the line digraph  $L\Gamma$  of a digraph  $\Gamma$ , each vertex represents an arc of  $\Gamma$ ,  $V(L\Gamma) = \{uv : (u, v) \in E(G)\}$ , and a vertex uv is adjacent to a vertex wz when v = w, that is, when in  $\Gamma$  the arc (u, v) is adjacent to the arc  $(w, z): u \to v(=w) \to z$ . By the Heuchenne's condition [9], a digraph  $\Gamma$  is a line digraph if and only if, for every pair of vertices u, v, either  $\Gamma^+(u) = \Gamma^+(v)$  or  $\Gamma^+(u) \cap \Gamma^+(v) = \emptyset$ . Since the line digraph of the converse digraph  $\overline{\Gamma}$  (obtained from  $\Gamma$  by reversing the directions of all the arcs) equals the converse of the line digraph,  $L\overline{\Gamma} = \overline{L\Gamma}$ , the above condition can be restated in terms of the in-neighborhoods  $\Gamma^-(u)$  and  $\Gamma^-(v)$ . In particular, we say that a digraph is a (U-)locally line digraph if there is a vertex subset U with at least two elements such that  $\Gamma^-(u) = \Gamma^-(v)$  for every  $u, v \in U$ .

In the case of graphs instead of digraphs, the Godsil–McKay switching given in [8] is a technique to obtain cospectral graphs.

#### 2. Main result

The following result describes the basic transformation of a digraph  $\Gamma$  into another digraph  $\Gamma'$  modifying slightly the walk properties of the former (see Fig. 1).

Download English Version:

# https://daneshyari.com/en/article/4598590

Download Persian Version:

https://daneshyari.com/article/4598590

Daneshyari.com