Generalizations of the Brunn-Minkowski inequality

Juntong Liu
School of Mathematics and Statistics, Fuyang Normal College, Fuyang, 236041, China

A R T I C L E I N F O

Article history:

Received 14 April 2016
Accepted 8 July 2016
Available online 14 July 2016
Submitted by X. Zhan

$M S C$:

15A45
47A63
Keywords:
Brunn-Minkowski inequality
Determinantal inequality
Sector
Numerical range
Schur complement

A B S T R A C T

Yuan and Leng (2007) gave a generalization of the matrix form of the Brunn-Minkowski inequality. In this note, we first give a simple proof of this inequality, and then show a generalization of this to a larger class of matrices, namely, matrices whose numerical ranges are contained in a sector.
© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The Brunn-Minkowski inequality is one of the most important geometric inequalities. There is a vast amount of work on its generalizations and on its connections with other areas. An excellent survey on this inequality is provided by Gardner (see [5]). The matrix form of the Brunn-Minkowski inequality (e.g., [8, p. 510]) states that if A and B are positive definite matrices of order n, then

$$
\begin{equation*}
(\operatorname{det}(A+B))^{1 / n} \geq(\operatorname{det}(A))^{1 / n}+(\operatorname{det}(B))^{1 / n} \tag{1.1}
\end{equation*}
$$

[^0]with equality if and only if $A=c B(c>0)$, where $\operatorname{det}(A)$ denotes the determinant of A.

In [4], Ky Fan gave a generalization of the above inequality (1.1). He established the following elegant inequality.

Let A_{k} denote the k th leading principal sub-matrix of A. If $C=A+B$, where A and B are positive definite matrices of order n, then

$$
\begin{equation*}
\left(\frac{\operatorname{det}(C)}{\operatorname{det}\left(C_{k}\right)}\right)^{\frac{1}{n-k}} \geq\left(\frac{\operatorname{det}(A)}{\operatorname{det}\left(A_{k}\right)}\right)^{\frac{1}{n-k}}+\left(\frac{\operatorname{det}(B)}{\operatorname{det}\left(B_{k}\right)}\right)^{\frac{1}{n-k}} \tag{1.2}
\end{equation*}
$$

In [14], Yuan and Leng gave a generalization of the inequality (1.2). They proved the following result of the matrix form of the Brunn-Minkowski inequality.

Theorem 1.1. (See [14, Theorem 1.1].) Let A and B be positive definite matrices of order n and let A_{k} and B_{k} be the k th leading principal sub-matrix of A and B, respectively. Let a and b be two nonnegative real numbers such that $A>a I_{n}$ and $B>b I_{n}$. If $C=A+B$, then

$$
\begin{aligned}
\left(\frac{\operatorname{det}(C)}{\operatorname{det}\left(C_{k}\right)}-\operatorname{det}\left((a+b) I_{n-k}\right)\right)^{\frac{1}{n-k}} \geq & \left(\frac{\operatorname{det}(A)}{\operatorname{det}\left(A_{k}\right)}-\operatorname{det}\left(a I_{n-k}\right)\right)^{\frac{1}{n-k}} \\
& +\left(\frac{\operatorname{det}(B)}{\operatorname{det}\left(B_{k}\right)}-\operatorname{det}\left(b I_{n-k}\right)\right)^{\frac{1}{n-k}}
\end{aligned}
$$

with equality if and only if $a^{-1} A=b^{-1} B$.
The original proof of Theorem 1.1 seems to be lengthy. In this note, we first give a simple proof of Theorem 1.1 using Bellman's inequality. And then, we show some generalizations of the matrix form of the Brunn-Minkowski inequality to the case of matrices whose numerical ranges are contained in a sector.

2. Auxiliary results

Let \mathbb{M}_{n} denote the set of $n \times n$ complex matrices. For two Hermitian matrices X and Y, we write $X \geq Y$ to mean that $X-Y$ is positive semidefinite, so $X \geq 0$ means that X is positive semidefinite. If X is positive definite, then we write $X>0$. Let I_{n} denote the $n \times n$ identity matrix.

If $X=\left[\begin{array}{ll}X_{11} & X_{12} \\ X_{21} & X_{22}\end{array}\right] \in \mathbb{M}_{n}$ with X_{11} nonsingular, then the Schur complement of X_{11} in X is defined as

$$
X / X_{11}=X_{22}-X_{21} X_{11}^{-1} X_{12}
$$

For more information on the Schur complement, we refer to the comprehensive survey (see [17]).

https://daneshyari.com/en/article/4598610

Download Persian Version:

https://daneshyari.com/article/4598610

Daneshyari.com

[^0]: E-mail address: juntongliu82@163.com.
 http://dx.doi.org/10.1016/j.laa.2016.07.006
 0024-3795/® 2016 Elsevier Inc. All rights reserved.

