

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

The Heisenberg group associated to a Hilbert space

Dumitru Popa

Department of Mathematics, Ovidius University of Constanta, Bd. Mamaia 124, 900527 Constanta, Romania

ARTICLE INFO

Article history: Received 14 March 2016 Accepted 19 July 2016 Available online 22 July 2016 Submitted by P. Semrl

MSC: 51F99 46B85 46C05

Keywords: Heisenberg group Hilbert space Group norm

ABSTRACT

Let $(X,\langle\cdot\rangle)$ be a complex Hilbert space. The set $H_X=X\times\mathbb{R}$ equipped with the binary operation $(x_1,t_1)\cdot(x_2,t_2)=(x_1+x_2,t_1+t_2+2\operatorname{Im}\left(\langle x_1,x_2\rangle\right))$ is the famous Heisenberg group. For all $\alpha>0,\ k>0$ let $N_{\alpha,k}:H_X\to[0,\infty)$ be defined by $N_{\alpha,k}\left(x,t\right)=\left(\|x\|^{\frac{\alpha}{k}}+|t|^{\frac{\alpha}{2k}}\right)^{\frac{1}{\alpha}}$. We prove that

$$N_{\alpha,k} ((x_1, t_1) \cdot (x_2, t_2))$$

 $\leq ([N_{\alpha,k} (x_1, t_1)]^k + [N_{\alpha,k} (x_2, t_2)]^k)^{\frac{1}{k}}$

if and only if $\alpha \geq 4k$. A similar result is proved for a real Hilbert space. Related questions are investigated. © 2016 Elsevier Inc. All rights reserved.

1. Introduction and background

Let n be a natural number. Following E.M. Stein, see [10], the nth complex Heisenberg group H^{2n+1} is $\mathbb{C}^n \times \mathbb{R}$ equipped with the binary operation

$$(z,t)\cdot(z',t')=(z+z',t+t'+2\operatorname{Im}\left(\langle z,z'\rangle\right))$$

E-mail address: dpopa@univ-ovidius.ro.

where \langle , \rangle is the complex scalar product on \mathbb{C}^n and $\mathrm{Im}\,(a)$ denotes the imaginary part of a complex number a, see also [9]. On H^{2n+1} there is the Koranyi norm defined by $N\left(z,t\right)=\left(\left\|z\right\|^4+t^2\right)^{\frac{1}{4}}$, see [2,4]. The nth real Heisenberg group H^{2n+1} is $\mathbb{R}^n\times\mathbb{R}^n\times\mathbb{R}$ equipped with the binary operation

$$(x_1, y_1, t_1) \cdot (x_2, y_2, t_2) = (x_1 + x_2, y_1 + y_2, t_1 + t_2 + 2(\langle y_1, x_2 \rangle - \langle x_1, y_2 \rangle))$$

where \langle , \rangle is the scalar product on \mathbb{R}^n and in this case the Koranyi norm is defined by $N(x,y,t) = \left(\left(\|x\|^2 + \|y\|^2\right)^2 + t^2\right)^{\frac{1}{4}}$, see e.g. [5]. In this paper we introduce the concept of the Heisenberg group associated to a complex or a real Hilbert space, define on them a kind of Koranyi norm, see Definitions 1, 2 and give conditions for this norm to be a group norm, see Theorems 1, 2. Let us recall the concepts, notion and notation used in this paper. Let (G,\cdot) be a group with e the unit element and x^{-1} the inverse of an element $x \in G$. A function $N: G \to \mathbb{R}$ is called a group norm if: 1) N(x) = 0 if and only if x = e; 2) $N(x^{-1}) = N(x)$, $\forall x \in G$; 3) $N(xy) \leq N(x) + N(y)$, $\forall x, y \in G$. In this case (G,\cdot,N) is called a normed group. It is well-known that if, $N:G\to\mathbb{R}$ is a group norm, then $d: G \times G \to \mathbb{R}$ defined by $d(x,y) = N(xy^{-1})$ is a metric, called the metric associated to the group norm N. Also, it is easy to prove that if, (G,\cdot) is a group, $N:G\to\mathbb{R}$ is a function which satisfies the conditions 1), 2) and $d: G \times G \to \mathbb{R}$ is defined by $d(x,y) = N(xy^{-1})$, then d satisfies the triangle inequality: $d(x,y) \leq d(x,z) + d(z,y)$ for all $x,y,z \in G$ if and only if $N(xy) \leq N(x) + N(y)$, $\forall x, y \in G$. For $(a, b) \in \mathbb{R}^2$, $1 \le p \le \infty$ we consider the norm $\|(a, b)\|_p = (|a|^p + |b|^p)^{\frac{1}{p}}$ for $1 \leq p < \infty \text{ and } \|(a,b)\|_{\infty} = \max{(|a|\,,|b|)}. \text{ Note that } \lim_{p \to \infty} \|(a,b)\|_p \stackrel{\text{\tiny r}}{=} \|(a,b)\|_{\infty}. \text{ If } z \text{ is a } \|(a,b)\|_{\infty}.$ complex number we denote by $\operatorname{Re}(z)$, $\operatorname{Im}(z)$, |z| the real part, the imaginary part, the modulus of z. All notation and notion are standard, see [1].

2. The Heisenberg group associated to a complex Hilbert space

Following E.M. Stein, see [10, page 530], we introduce the Heisenberg group associated to a complex Hilbert space as follows.

Definition 1. Let (X, \langle, \rangle) be a complex Hilbert space. The set $H_X = X \times \mathbb{R}$ equipped with the binary operation

$$(x_1, t_1) \cdot (x_2, t_2) = (x_1 + x_2, t_1 + t_2 + 2\operatorname{Im}(\langle x_1, x_2 \rangle))$$

is a group, called the Heisenberg group associated to the complex Hilbert space X. For all $\alpha > 0$, k > 0 we define the (α, k) -Koranyi norm $N_{\alpha, k} : H_X \to [0, \infty)$ by the formula

$$N_{\alpha,k}(x,t) = \left(\|x\|^{\frac{\alpha}{k}} + |t|^{\frac{\alpha}{2k}} \right)^{\frac{1}{\alpha}}.$$

Download English Version:

https://daneshyari.com/en/article/4598613

Download Persian Version:

https://daneshyari.com/article/4598613

<u>Daneshyari.com</u>