Linear rank preservers of tensor products of rank one matrices

Zejun Huang ${ }^{\text {a }}$, Shiyu Shi ${ }^{\text {b }}$, Nung-Sing Sze ${ }^{\text {b,* }}$
${ }^{\text {a }}$ College of Mathematics and Econometrics, Hunan University, Changsha 410082, PR China
${ }^{\text {b }}$ Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong

A R T I C L E I N F O

Article history

Received 27 August 2015
Accepted 27 July 2016
Available online 1 August 2016
Submitted by P. Semrl

MSC:

15A03
15A69

Keywords:
Linear preserver
Rank
Tensor product
Partial transpose
Realignment

A B S T R A C T

Let n_{1}, \ldots, n_{k} be integers larger than or equal to 2 . We characterize linear maps $\phi: M_{n_{1} \cdots n_{k}} \rightarrow M_{n_{1} \cdots n_{k}}$ such that

$$
\begin{aligned}
& \operatorname{rank}\left(\phi\left(A_{1} \otimes \cdots \otimes A_{k}\right)\right)=1 \\
& \quad \text { whenever } \quad \operatorname{rank}\left(A_{1} \otimes \cdots \otimes A_{k}\right)=1
\end{aligned}
$$

for all $A_{i} \in M_{n_{i}}, i=1, \ldots, k$. Applying this result, we extend two recent results on linear maps that preserve the rank of special classes of matrices.
© 2016 Elsevier Inc. All rights reserved.

1. Introduction and statement of main results

Let $n \geq 2$ be positive integers. Denote by M_{n} the set of $n \times n$ complex matrices and \mathbb{C}^{n} the set of complex column vectors with n components. Linear preserver problems concern

[^0]the study of linear maps on matrices or operators with some special properties, which has a long history. In 1897, Frobenius [8] showed that a linear operator $\operatorname{det}(\phi(A))=\operatorname{det}(A)$ for all $A \in M_{n}$ if and only if there are $M, N \in M_{n}$ with $\operatorname{det}(M N)=1$ such that ϕ has the form
$$
A \mapsto M A N \quad \text { or } \quad A \mapsto M A^{t} N
$$

Since then, lots of linear preservers have been characterized, see $[4,13]$ and their references. In particular, Marcus and Moyls [19] determined linear maps that send rank one matrices to rank one matrices, which have the form $A \mapsto M A N$ or $A \mapsto M A^{T} N$ for some nonsingular matrices M and N.

Recently, linear maps that preserve certain properties of tensor products are studied. The tensor product (Kronecker product) of two matrices $A \in M_{m}$ and $B \in M_{n}$ is defined to be $A \otimes B=\left[a_{i j} B\right]$, which is in $M_{m n}$. In [4], the authors determined linear maps on Hermitian matrices that leave the spectral radius of all tensor products invariant. In $[3,5,6,14]$ the authors determined linear maps on $M_{m n}$ that preserve Ky Fan norms, Shattern norms, numerical radius, k-numerical range, product numerical range of all matrices of the form $A \otimes B$ with $A \in M_{m}$ and $B \in M_{n}$. Notice that the set of matrices of tensor product form shares only a very small portion in $M_{m n}$ and the sum of two tensor products is in general no longer a tensor product form. Therefore, such linear preserver problems are more challenging than the traditional problems. In some of the above mentioned papers, the authors have also extended their results to multipartite system, i.e., matrices of the form $A_{1} \otimes \cdots \otimes A_{k}$ with $k \geq 2$.

In the literature, rank preserver problem is known to be one of the fundamental problems in this subject as many other preserver problems can be deduced to rank preserver problems. For example, the result of Marcus and Moyls [19] on linear rank one preservers has been applied in many other preserver results. More discussion can be found in [10]. Let n_{1}, \ldots, n_{k} be positive integers of at least two. In [27], Zheng, Xu and Fošner showed that a linear map $\phi: M_{n_{1} \cdots n_{k}} \rightarrow M_{n_{1} \cdots n_{k}}$ satisfies

$$
\begin{equation*}
\operatorname{rank} \phi\left(A_{1} \otimes \cdots \otimes A_{k}\right)=\operatorname{rank}\left(A_{1} \otimes \cdots \otimes A_{k}\right) \quad \text { for all } A_{i} \in M_{n_{i}}, i=1, \ldots, k \tag{1.1}
\end{equation*}
$$

if and only if ϕ has the form

$$
\begin{equation*}
\phi\left(A_{1} \otimes \cdots \otimes A_{k}\right)=M\left(\psi_{1}\left(A_{1}\right) \otimes \cdots \otimes \psi_{k}\left(A_{k}\right)\right) N \tag{1.2}
\end{equation*}
$$

where $M, N \in M_{n_{1} \cdots n_{k}}$ are nonsingular and $\psi_{i}, i=1, \ldots, k$, is either the identity map or the transpose map. Their proof was done by induction on k with some smart argument on the rank of sum of certain matrices. The same authors also considered in [26] the injective maps on the space of Hermitian matrices satisfying (1.1) for rank one matrices only, the additive case was also considered in [16]. By using a structure theorem of Westwick [23], Lim [17] improved the result of Zheng et al. and showed that a linear $\operatorname{map} \phi: M_{n_{1} \cdots n_{k}} \rightarrow M_{n_{1} \cdots n_{k}}$ satisfying (1.1) for rank one matrices and nonsingular matrices has the form (1.2) too.

https://daneshyari.com/en/article/4598615

Download Persian Version:

https://daneshyari.com/article/4598615

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: mathzejun@gmail.com (Z. Huang), sy.shi@connect.polyu.hk (S. Shi), raymond.sze@polyu.edu.hk (N.-S. Sze).

