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Given a positive integer d, the Kaplansky–Lvov conjecture 
states that the set of values of a multilinear noncommutative 
polynomial f ∈ C〈x1, . . . , xn〉 on the matrix algebra Md(C)
is a vector subspace. In this article the technique of using 
one-wiggle families of Sylvester’s clock-and-shift matrices is 
championed to establish the conjecture for polynomials f of 
degree three when d is even or d < 17.
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1. Introduction and the statement of the main result

Images of noncommutative polynomials play a fundamental role in noncommutative 
algebra and are a central topic of the theory of polynomial identities [18,19]. Another 
area where these objects play a prominent role is free analysis [23,11], especially its free 
real algebraic geometry branch [9]. This recent progress has led to a surge of interest in 
images of noncommutative polynomials in matrix rings. A fundamental open problem in 
this regard is (cf. [8]):

Conjecture 1.1 (The Kaplansky–Lvov multilinear conjecture). Let f be a multilinear poly-
nomial with complex coefficients, and let d ∈ N. Then the set of values of f in Md(C) is 
a vector space.

Conjecture 1.1 is stated in [8] for all fields, not just C. We have, however, chosen 
to present the conjecture only over C as this is where our main interest lies. Likewise 
many of the results from the literature cited below were proved for large classes of fields, 
but we shall only state their restrictions to C. Incidentally, by general model theory, 
all our results presented over C are valid over arbitrary algebraically closed fields of 
characteristic 0.

If the set of values of a noncommutative polynomial f is a vector subspace of Md(C), 
then it is a Lie ideal (see e.g. [4]), and hence either {0}, C · Id, Md(C) ∩ ker Tr =
[Md(C), Md(C)] or Md(C) by an old result of Herstein. Thus noncommutative polyno-
mials can be classified based on their (span of) values in Md(C). A very special instance 
of Conjecture 1.1 is the case f = [x, y] = xy − yx, which is a classical result in matrix 
theory due to Shoda [20] (see also Albert–Muckenhoupt [1]): every traceless matrix is 
a commutator. In [12] Kanel-Belov, Malev and Rowen established Conjecture 1.1 for 
d = 2, i.e., for values in 2 ×2 matrices. In [22] Špenko proves Conjecture 1.1 for Lie poly-
nomials (i.e., elements of a free Lie algebra) of degree ≤ 4. Mesyan [17] extends this to 
polynomials of degree 3 which are sums of commutators, while Buzinski and Winstanley 
[5] present an extension to multilinear sums of commutators of degree 4. Further recent 
progress on images of multilinear polynomials is given in [2,7,15,16,13,14].

Our main result establishes Conjecture 1.1 for polynomials f of degree three when d
is even or d < 17 is odd:

Theorem 1.2. Let f be a complex multilinear polynomial of degree three.

(1) If d ∈ N is even then the image of f in Md(C) is a vector space.
(2) If d ∈ N is odd and d < 17, then the image of f in Md(C) is a vector space.

The main novelty in our approach is the use of the clock-and-shift matrices first uti-
lized by Sylvester [21]. These matrices are ubiquitous in mathematical physics (cf. [24, 
Chapter IV, §15] or [3,6]) and endow Md(C) with a group-with-cocycle structure (see 
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