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We describe a new method to compute general cubature for-
mulae. The problem is initially transformed into the compu-
tation of truncated Hankel operators with flat extensions. We 
then analyze the algebraic properties associated to flat exten-
sions and show how to recover the cubature points and weights 
from the truncated Hankel operator. We next present an algo-
rithm to test the flat extension property and to additionally 
compute the decomposition. To generate cubature formulae 
with a minimal number of points, we propose a new relaxation 
hierarchy of convex optimization problems minimizing the nu-
clear norm of the Hankel operators. For a suitably high order 
of convex relaxation, the minimizer of the optimization prob-
lem corresponds to a cubature formula. Furthermore cubature 
formulae with a minimal number of points are associated to 
faces of the convex sets. We illustrate our method on some 
examples, and for each we obtain a new minimal cubature 
formula.
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1. Cubature formula

1.1. Statement of the problem

Consider the integral for a continuous function f ,

I[f ] =
∫
Ω

w(x)f(x)dx

where Ω ⊂ Rn and w is a positive function on Ω.
We are looking for a cubature formula which has the form

〈σ|f〉 =
r∑

j=1
wjf(ζj) (1)

where the points ζj ∈ Cn and the weights wj ∈ R are independent of the function f . 
They are chosen so that

〈σ|f〉 = I[f ], ∀f ∈ V,

where V is a finite dimensional vector space of functions. Usually, the vector space V is 
the vector space of polynomials of degree ≤ d, because a well-behaved function f can be 
approximated by a polynomial, so that Q[f ] approximates the integral I[f ].

Given a cubature formula (1) for I, its algebraic degree is the largest degree d for 
which I[f ] = 〈σ|f〉 for all f of degree ≤ d.

1.2. Related works

Prior approaches to the solution of cubature problem can be grouped into roughly 
two classes. One, where the goal is to estimate the fewest weighted, aka cubature points 
possible for satisfying a prescribed cubature rule of fixed degree [9,24,26,29,30,33]. The 
other class focusses on the determination and construction of cubature rules which would 
yield the fewest cubature points possible [7,34,38–41,44,45]. In [34], for example, Radon 
introduced a fundamental technique for constructing minimal cubature rules where the 
cubature points are common zeros of multivariate orthogonal polynomials. This fun-
damental technique has since been extended by many, including e.g. [33,41,45] where 
notably, the paper [45] uses multivariate ideal theory, while [33] uses operator dilation 
theory. In this paper, we propose another approach to the second class of cubature so-
lutions, namely, constructing a suitable finite dimensional Hankel matrix and extracting 
the cubature points using sub-operators of the Hankel matrix [18]. This approach is 
related to [21–23], which in turn are based on the methods of multivariate truncated 
moment matrices, their positivity and extension properties [11–13].
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