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The factorization method presented in this paper takes 
advantage of the special structures and properties of saddle 
point matrices. A variant of Gaussian elimination equivalent 
to the Cholesky’s factorization is suggested and implemented 
for factorizing the saddle point matrices block-wise with small 
blocks of orders 1 and 2. The Gaussian elimination applied 
to these small blocks on block level also induces a block 
3 ×3 structured factorization of which the blocks have special 
properties. We compare the new block factorization with the 
Schilders’ factorization in terms of sparsity and computational 
complexity. The factorization can be used as a direct method, 
and also anticipate for preconditioning techniques.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Indefinite matrices with special forms which occur in many scientific and engineering 
problems can be exploited efficiently by taking advantage of the structures and properties 
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of their blocks. We consider symmetric indefinite linear systems of the form (see 2 for 
the notation)

Å ů = b̊ with Å =
[
Å B̊

T

B̊ 0

]
, ů =

[
x̊
ẙ

]
, b̊ =

[
f̊
g̊

]
(1)

where Å ∈ R
n×n is symmetric positive definite; B̊ ∈ R

m×n has full rank and m < n; 
x̊, f̊ ∈ R

n; and ẙ, ̊g ∈ R
m. In applications, the coefficient matrix Å is usually sparse 

and large, which can easily turn out to be a million by million. Systems of the form 
(1) are known as saddle point problems, which result from discretization of PDEs or 
coupled PDEs such as the Stokes problem and generally in the context of mixed finite 
element methods. Saddle point systems also arise in electronic circuit simulations [28,
32], Maxwell’s equations [22], economic models and constrained optimization problems 
[9,14,15,17,30]. For example consider the equality-constrained quadratic programming 
problem:

min̊
x

p(̊x) = 1
2 x̊

T Å x̊− x̊T f̊ subject to B̊ x̊ = g̊. (2)

The Karush–Kuhn–Tucker (KKT) conditions [14,36] for the solution to (2) give rise to 
the system (1), where the components of ̊y are the associated Lagrange multipliers. Thus 
the coefficient matrix Å is also known as KKT matrix and it is nonsingular if (i) B̊ has 
full row rank and (ii) the reduced Hessian matrix Z̊

T
Å Z̊ is positive definite, where 

Z̊ ∈ R
n×(n−m) is the matrix whose columns span the ker(B̊) [26, p. 443].

Numerous solution methods for the saddle point systems of the form (1) can be 
found in the literature and many of them have focused on preconditioning techniques 
for Krylov subspace iterative solvers [2,6,11,17,20–22,25,29]. One can find a wide range 
of iterative methods in [1], a detailed survey done by Benzi, Golub and Liesen including 
preconditioning techniques. As a direct method (as opposed to iterative solvers), various 
techniques based on symmetric indefinite factorization P T ÅP = LDLT can be found 
in [8,13,19,31,32,35], where P is a permutation matrix, L is unit lower triangular matrix, 
D is block-diagonal matrix with blocks of order 1 or 2. The permutation matrix P is 
introduced for (i) pivoting dynamically and (ii) reducing the fill-in in L if Å is sparse. 
The block diagonal pivoting strategies are mainly due to Bunch and Kaufman [3], Bunch 
and Parlett [4] and Bunch, Kaufman and Parlett (BKP) [5].

In this paper, we propose a different transformation τT Å τ = A, followed by a block 
Gaussian elimination factorization Pπ

TAPπ = Lb Db
−1 Lb

T , where:

(i) Lb is block lower triangular with blocks of orders 1 and 2, and Db = diag(Lb) is 
the block diagonal part of Lb with blocks of orders 1 and 2.

2 The original system (1) undergoes a transformation, so we use the symbol ‘ ̊ ’ in its notation in order 
to represent the transformed system more conveniently without the symbol ‘ ̊ ’.
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