
The Journal of Systems and Software 85 (2012) 932– 943

Contents lists available at SciVerse ScienceDirect

The Journal of Systems and Software

j ourna l ho me page: www.elsev ier .com/ locate / j ss

Debugging applications created by a Domain Specific Language: The IPAC case

Kostas Kolomvatsos ∗, George Valkanas, Stathes Hadjiefthymiades
Pervasive Computing Research Group, Department of Informatics and Telecommunications, National & Kapodistrian University of Athens, Greece

a r t i c l e i n f o

Article history:
Received 10 January 2011
Received in revised form 2 November 2011
Accepted 11 November 2011
Available online 26 November 2011

Keywords:
Debugger
Domain Specific Language
Software testing

a b s t r a c t

Nowadays, software developers have created a large number of applications in various research domains
of Computer Science. However, not all of them are familiar with the majority of the research domains.
Hence, Domain Specific Languages (DSLs) can provide an abstract, concrete description of a domain in
terms that can easily be managed by developers. The most important in such cases is the provision of a
debugger for debugging the generated software based on a specific DSL. In this paper, we propose and
present a simple but efficient debugger created for the needs of the IPAC system. The debugger is able
to provide debugging facilities to developers that define applications for autonomous mobile nodes. The
debugger can map code lines between the initial application workflow and the final code defined in a
known programming language. Finally, we propose a logging server responsible to provide debugging
facilities for the IPAC framework. The IPAC system is consisted of a number of middleware services for
mobile nodes acting in a network. In this system a number of mobile nodes exchanged messages that are
visualized for more efficient manipulation.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

A lot of research has been performed in various domains of Com-
puter Science. In most of the cases, software components should
be developed in order to provide more functionality in the pro-
duced systems. However, users, not having a lot of experience
with programming languages, are not able to develop efficient soft-
ware components. In this case, Model Driven Engineering (MDE) can
provide a lot of advantages not only to underexperienced program-
mers but also to proficient ones that are unfamiliar with a specific
domain. MDE is a software development methodology for creating
models in a specific domain. MDE technologies offer a promising
approach to address the inability of the third generation languages
to express domain concepts effectively (Schmidt, 2006). The aim of
MDE is to increase efficiency in developing applications for the spe-
cific domain. Domain Specific Languages (DSLs) follow the principles
of the MDE development and can provide a number of advantages
in cases where domain programming knowledge is limited (Mernik
et al., 2005; Sprinkle et al., 2009).

A DSL is a language designed for a specific field of applications. Its
aim is to solve problems related to a highly focused field of research.
DSLs target to more specific tasks than classic programming lan-
guages. They provide expressions for describing parameters of a
domain of interest and they have a concrete syntax. A number

∗ Corresponding author.
E-mail addresses: kostasks@di.uoa.gr (K. Kolomvatsos), gvalk@di.uoa.gr

(G. Valkanas), shadj@di.uoa.gr (S. Hadjiefthymiades).

of semantics are used in order to lead to the automatic genera-
tion of specific tools important for the creation of the final code
(Kelly and Tolvanen, 2008). In DSL tools, there are specific method-
ologies for the definition of the semantics of each language. The
most significant advantage of the DSL usage is that they provide
the opportunity to users to write more easily domain specific pro-
grams (Kosar et al., 2008). These programs are not dependent on
the underlying platform, thus, providing an additional advantage.

From the above, it is obvious that there is a need for the devel-
opment of debugging facilities for DSLs in order for the user to be
able to debug code written in the specific language. The debugger
should be oriented to the specific DSL covering all the elements of
the language. However, this is a difficult task due to the fact that
DSLs are oriented to specific domains and generic debuggers are
not directly applicable. The debugging process should be error free
and not time consuming otherwise the system will not be efficient.

In this paper, we present our proposal for debugging applica-
tions developed with a DSL. Furthermore, we present our system
for a server responsible to translate debug messages sent by a num-
ber of mobile nodes. We shortly describe an Application Description
Language (ADL) created in the framework of the IPAC (Integrated
Platform for Autonomic Computing) project. The ADL is the basis
for the creation of a number of utilities useful for the creation of
applications. Our debugger builds on top of a logger messaging
infrastructure, where messages follow a special format and are pre-
sented in a friendly user interface. The important is that these log
messages are created in a known programming language and the
debugger is capable of mapping the code lines of the generated
code to the lines in the initial application workflow. Our proposal

0164-1212/$ – see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.jss.2011.11.1009

dx.doi.org/10.1016/j.jss.2011.11.1009
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:kostasks@di.uoa.gr
mailto:gvalk@di.uoa.gr
mailto:shadj@di.uoa.gr
dx.doi.org/10.1016/j.jss.2011.11.1009

K. Kolomvatsos et al. / The Journal of Systems and Software 85 (2012) 932– 943 933

is characterized by simplicity as well as efficiency because it does
not require a lot of experience and effort from the developer’s side.

The paper is organized as follows. Section 2 is devoted to the
description of the related work. We present research efforts in cre-
ating DSLs as well as some debugger proposals. Accordingly, in
Section 3, we shortly describe the IPAC system. Section 4 describes
the ADL, proposed for the creation of applications for autonomous
mobile nodes. The IPAC code generation component is also pre-
sented in Section 4. This component is responsible to produce the
final application code in a known programming language (i.e. Java).
Specific templates are used for the mapping process between the
final code lines and the initial application workflow. In Section 5,
we describe the architecture of the proposed debugger. We present
an Open Service Gateway initiative (OSGi) (OSGi) service created to
manipulate log messages and depict the viewer that visualizes such
messages. We devote Section 6 in describing the IPAC logging server
responsible to visualize log messages sent by mobile nodes. This
approach has the advantage that we can debug the whole system
and the interconnection of nodes as they act in the network. Finally,
a case study for two example applications is presented in Section 7
by describing step by step the debugging process and we conclude
our paper in Section 8.

2. Related work

DSLs attracted a lot of attention due to the reason that they
provide abstraction in the definition of applications oriented to a
specific research field. In Wu et al. (2009), the authors demonstrate
a framework to automate the generation of DSL testing tools. The
presented framework utilizes Eclipse plug-ins for defining DSLs.
Moreover, a set of tools concerning a translator, and an interface
generator are responsible to map the DSL debugging perspective
to the underlying General Purpose Language (GPL) debugging ser-
vices. The aim is to present the feasibility and the applicability of
debugging and testing information derived by a DSL in a friendly
programming environment.

A program transformation engine supporting the debugging
process written in a DSL is described in Rebernak et al. (2009), Wu
et al. (2008), and Wu et al. (2009). The discussed approaches con-
cern the methodology of generating a set of tools necessary to use a
DSL from a language defined in a specific grammar. Such tools are:
the editor, the compiler and the debugger (Henriques et al., 2005).
This research effort focuses on issues related to the debugging
support for a DSL development environment. The debugger is auto-
matically generated by a language specification. Authors describe
two approaches for weaving the debugger in conjunction with the
DSL Debugging Framework (DDF) plug-in. The first approach is appli-
cable when the aspect weaver is available for the generated GPL
while the second approach involves the Design Maintenance System
(DMS) (Baxter et al., 2004) transformation and is applied when the
aspect weaver is not available.

In Sadilek and Wachsmuth (2008), the authors describe a pro-
totyping methodology for of Domain Specific Modeling Languages
(DSMLs) on an independent level of the MDE architecture. They
argue that the prototyping method should describe the semantics
of the DSML in an operational fashion. For this, they use standard
modeling techniques i.e. Meta Object Facility (MOF) (Meta Object
Facility) and Query/View/Transformations (QVT) Relations (Query-
View-Transformation). By combining this approach with existing
metamodel-based editor creation technologies they enable the
rapid and cost free prototyping of visual interpreters and debug-
gers. Authors utilize the Eclipse Modeling Framework (EMF) which
is similar to MOF and using the Ecore metamodel of a DSML they
can generate the DSML plug-in with EMF. The created plug-in

provides the basis for the creation, access, modification, and storage
of models that are instances of the DSML.

A logic programming based framework for specification, effi-
cient implementation, and automatic verification of DSLs, is
presented in Gupta and Pontelli (2002). Their proposal is based
on Horn logic and, eventually, constraints to specify semantics of
DSLs. The semantic specification serves as an interpreter and more
efficient implementations of the DSL, such as a compiler, can be
automatically derived by partial evaluation. The executable spec-
ification can be used for automatic or semi-automatic verification
of programs written in a DSL as well as for automatically obtain-
ing conventional debuggers and profilers. The provided Horn logic
syntax and semantics are executable leading to the automatic defi-
nition of an interpreter. Finally, the authors present their approach
and give some examples indicating the efficiency of the discussed
methodology.

The use of execution semantics in creating a debugger for a DSL is
also discussed in Blunk et al. (2009). The authors present models for
the debugging context, breakpoints and stepping of programs writ-
ten in a voice control language. A model-to-model transformation
approach is followed where a DSL model is translated to a debug-
ging metamodel, e.g. in QVT Relations. The debugging metamodel
describes concepts for visualizing threads, variables and their val-
ues. A specific user interface is used for depicting the variables.

In this paper, we propose a DSL for embedded systems and
describe our approach for the debugging process. Our DSL is ori-
ented to the definition of applications that rely on a number of
middleware services in order to provide intelligent, context-aware
services to final users. Our proposal for the debugging process
involves the use of log messages sent to a central debugging ser-
vice responsible for translating and visualizing them. Log messages
contain references that indicate the mapping between the DSL
code and the final code defined in a GPL. The proposed solution
involves a visualization part where developers can easily identify
the code components that are erroneous by observing the appli-
cation variables values. The debugging facility is fully embedded
in an Application Creation Environment (ACE) and, thus, its use is
very simple. The applications built in IPAC framework include code
for handling events when they run in the OSGi environment. The
OSGi framework has its own event handling mechanism and the
application cannot affect it. This imposes a difference between our
framework and other proposed solutions. Our debugging mecha-
nism should be able to react in such cases. When the application
runs, it is registered in the OSGi environment to react to events.
This means that the application is not mainly executed in a step
wise manner but it is a combination of a step wise executed part
and an event reacting part. Each application should be tested in the
OSGi environment. Moreover, as the ACE is embedded in Eclipse
but it acts as a separate system, we need a solution that will not
utilize the Eclipse Debugging Framework (EDF). Therefore, we pro-
vide a separate debugging interface where the developer can see
the reaction of the application to events. This is achieved by using
the IPAC emulator. Comparing our work against the literature, we
can denote the following differences:

• The work presented in Blunk et al. (2009) utilizes a meta-
model description of the language model and operational
semantics in order to map the language with the EDF which
assumes the interfacing responsibility. A model to model
transformation takes place. In our solution, we are not
based on a meta-modeling approach as it adds extra over-
head. Moreover, the meta-modeling approach has another
disadvantage (Ehrig et al., 2008): it is not constructive, i.e., it does
not offer direct means of generating instances of the language.

• Another difference of our proposed framework compared to
Blunk et al. (2009), Wu et al. (2008), and Wu et al. (2009)

Download	English	Version:

https://daneshyari.com/en/article/459867

Download	Persian	Version:

https://daneshyari.com/article/459867

Daneshyari.com

https://daneshyari.com/en/article/459867
https://daneshyari.com/article/459867
https://daneshyari.com/

