

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

Small subset sums

LINEAR

lications

Gergely Ambrus^{a,b,*}, Imre Bárány^{a,c}, Victor Grinberg^d

^a Rényi Institute of Mathematics, Hungarian Academy of Sciences, PO Box 127, 1364 Budapest, Hungary

^b École Polytechnique Fédérale de Lausanne, EPFL SB MATHGEOM DCG Station 8, CH-1015 Lausanne, Switzerland

^c Department of Mathematics, University College London, Gower Street,

London WC1E 6BT, England, United Kingdom

^d 5628 Hempstead Rd, Apt 102, Pittsburgh, PA 15217, USA

ARTICLE INFO

Article history: Received 11 February 2015 Accepted 29 February 2016 Available online 14 March 2016 Submitted by R. Brualdi

MSC: 52A40 05B20

Keywords: Vector sums Steinitz theorem Normed spaces

ABSTRACT

Let $\|.\|$ be a norm in \mathbb{R}^d whose unit ball is B. Assume that $V \subset B$ is a finite set of cardinality n, with $\sum_{v \in V} v = 0$. We show that for every integer k with $0 \leq k \leq n$, there exists a subset U of V consisting of k elements such that $\|\sum_{v \in U} v\| \leq \lceil d/2 \rceil$. We also prove that this bound is sharp in general. We improve the estimate to $O(\sqrt{d})$ for the Euclidean and the max norms. An application on vector sums in the plane is also given.

© 2016 Elsevier Inc. All rights reserved.

1. Definitions, notation, results

We consider the real *d*-dimensional vector space \mathbb{R}^d with a norm $\|.\|$ whose unit ball is *B*. For a finite set $U \subset \mathbb{R}^d$, |U| stands for the cardinality of *U*, and s(U) for the sum of the elements of *U*, so $s(U) = \sum_{u \in U} u$, and $s(\emptyset) = 0$ of course.

^{*} Corresponding author at: Rényi Institute of Mathematics, Hungarian Academy of Sciences, PO Box 127, 1364 Budapest, Hungary.

E-mail addresses: ambrus@renyi.hu (G. Ambrus), barany@renyi.hu (I. Bárány), victor_grinberg@yahoo.com (V. Grinberg).

In 1914 Steinitz [12] proved that, in the case of the Euclidean norm, for every finite set $V \subset B$ with |V| = n and s(V) = 0, there exists an ordering v_1, \ldots, v_n of the vectors in V such that all partial sums have norm at most 2d, that is

$$\max_{k=1,\dots,n} \left\| \sum_{1}^{k} v_i \right\| \le 2d.$$

It is important here that the bound 2d does not depend on n, the size of V. Steinitz's result implies that for every norm and every finite $V \subset B$ with s(V) = 0 there is an ordering along which all partial sums are bounded by a constant that depends only on B. Let S(B) denote the smallest such constant for a given norm with unit ball B, and set $S(d) = \sup S(B)$ where the supremum is taken over all norms in \mathbb{R}^d . The best known bounds on S(d) are: $S(d) \leq d$, proved by Sevastyanov [9], and by Grinberg and Sevastyanov [7], and $S(d) \geq \frac{d+1}{2}$, which is shown by an example coming from the ℓ_1 norm [7]. For specific norms, stronger results may hold. In particular, for ℓ_2 and ℓ_{∞} , it is conjectured that the right order of magnitude of S(B) is \sqrt{d} – although not even o(d) is known.

Steinitz's result immediately implies that for every finite set $V \subset B$ with s(V) = 0 and every integer $k, 0 \le k \le |V|$, there is a subset $U \subset V$ such that |U| = k and ||s(U)|| is not greater than a constant depending only on d, B, k, for instance S(B) is such a constant. Let T(B, k) be the smallest constant with this property, set $T(B) = \sup_k T(B, k)$, and $T(d) = \sup T(B)$ where the supremum is taken over all norms in \mathbb{R}^d . It is evident that $T(B, k) \le k$.

In this paper we investigate T(B, k), T(B) and T(d). Here come our main results. First, the estimate for general norms.

Theorem 1. Let B be the unit ball of an arbitrary norm on \mathbb{R}^d . For any finite set $V \subset B$ with s(V) = 0, and for any $k \leq |V|$, there exists a subset $U \subset V$ with k elements, so that

$$\|s(U)\| \le \left\lceil \frac{d}{2} \right\rceil.$$

In other words, $T(d) \leq \left\lceil \frac{d}{2} \right\rceil$.

Theorem 2. For every $d \ge 1$, there exists a norm in \mathbb{R}^d with unit ball B, so that $T(B, k) = \lfloor \frac{d}{2} \rfloor$ for infinitely many values of k. Also, T(B, k) = k for all $k \le \lfloor \frac{d}{2} \rfloor$.

Theorems 1 and 2 imply that $T(d) = \left\lfloor \frac{d}{2} \right\rfloor$ for all integers $d \ge 1$.

One expects that for specific norms better estimates are valid. We have proved this in some cases. The unit ball of the norm ℓ_p^d will be denoted by B_p^d . We have the following results in the cases $p = 1, 2, \infty$.

Download English Version:

https://daneshyari.com/en/article/4598670

Download Persian Version:

https://daneshyari.com/article/4598670

Daneshyari.com