Small subset sums

Gergely Ambrus ${ }^{\text {a,b,* }}$, Imre Bárány ${ }^{\text {a,c }}$, Victor Grinberg ${ }^{\text {d }}$
${ }^{\text {a }}$ Rényi Institute of Mathematics, Hungarian Academy of Sciences, PO Box 127, 1364 Budapest, Hungary
${ }^{\text {b }}$ École Polytechnique Fédérale de Lausanne, EPFL SB MATHGEOM DCG
Station 8, CH-1015 Lausanne, Switzerland
${ }^{\text {c }}$ Department of Mathematics, University College London, Gower Street, London WC1E 6BT, England, United Kingdom
d 5628 Hempstead Rd, Apt 102, Pittsburgh, PA 15217, USA

A R T I C L E I N F O

Article history:

Received 11 February 2015
Accepted 29 February 2016
Available online 14 March 2016
Submitted by R. Brualdi

MSC:

52A40
05B20
Keywords:
Vector sums
Steinitz theorem
Normed spaces

Abstract

Let $\|$.$\| be a norm in \mathbb{R}^{d}$ whose unit ball is B. Assume that $V \subset B$ is a finite set of cardinality n, with $\sum_{v \in V} v=0$. We show that for every integer k with $0 \leq k \leq n$, there exists a subset U of V consisting of k elements such that $\left\|\sum_{v \in U} v\right\| \leq\lceil d / 2\rceil$. We also prove that this bound is sharp in general. We improve the estimate to $O(\sqrt{d})$ for the Euclidean and the max norms. An application on vector sums in the plane is also given.

© 2016 Elsevier Inc. All rights reserved.

1. Definitions, notation, results

We consider the real d-dimensional vector space \mathbb{R}^{d} with a norm $\|$.$\| whose unit ball$ is B. For a finite set $U \subset \mathbb{R}^{d},|U|$ stands for the cardinality of U, and $s(U)$ for the sum of the elements of U, so $s(U)=\sum_{u \in U} u$, and $s(\emptyset)=0$ of course.

[^0]In 1914 Steinitz [12] proved that, in the case of the Euclidean norm, for every finite set $V \subset B$ with $|V|=n$ and $s(V)=0$, there exists an ordering v_{1}, \ldots, v_{n} of the vectors in V such that all partial sums have norm at most $2 d$, that is

$$
\max _{k=1, \ldots, n}\left\|\sum_{1}^{k} v_{i}\right\| \leq 2 d
$$

It is important here that the bound $2 d$ does not depend on n, the size of V. Steinitz's result implies that for every norm and every finite $V \subset B$ with $s(V)=0$ there is an ordering along which all partial sums are bounded by a constant that depends only on B. Let $S(B)$ denote the smallest such constant for a given norm with unit ball B, and set $S(d)=\sup S(B)$ where the supremum is taken over all norms in \mathbb{R}^{d}. The best known bounds on $S(d)$ are: $S(d) \leq d$, proved by Sevastyanov [9], and by Grinberg and Sevastyanov [7], and $S(d) \geq \frac{d+1}{2}$, which is shown by an example coming from the ℓ_{1} norm [7]. For specific norms, stronger results may hold. In particular, for ℓ_{2} and ℓ_{∞}, it is conjectured that the right order of magnitude of $S(B)$ is \sqrt{d} - although not even $o(d)$ is known.

Steinitz's result immediately implies that for every finite set $V \subset B$ with $s(V)=0$ and every integer $k, 0 \leq k \leq|V|$, there is a subset $U \subset V$ such that $|U|=k$ and $\|s(U)\|$ is not greater than a constant depending only on d, B, k, for instance $S(B)$ is such a constant. Let $T(B, k)$ be the smallest constant with this property, set $T(B)=\sup _{k} T(B, k)$, and $T(d)=\sup T(B)$ where the supremum is taken over all norms in \mathbb{R}^{d}. It is evident that $T(B, k) \leq k$.

In this paper we investigate $T(B, k), T(B)$ and $T(d)$. Here come our main results. First, the estimate for general norms.

Theorem 1. Let B be the unit ball of an arbitrary norm on \mathbb{R}^{d}. For any finite set $V \subset B$ with $s(V)=0$, and for any $k \leq|V|$, there exists a subset $U \subset V$ with k elements, so that

$$
\|s(U)\| \leq\left\lceil\frac{d}{2}\right\rceil .
$$

In other words, $T(d) \leq\left\lceil\frac{d}{2}\right\rceil$.
Theorem 2. For every $d \geq 1$, there exists a norm in \mathbb{R}^{d} with unit ball B, so that $T(B, k)=$ $\left\lceil\frac{d}{2}\right\rceil$ for infinitely many values of k. Also, $T(B, k)=k$ for all $k \leq\left\lfloor\frac{d}{2}\right\rfloor$.

Theorems 1 and 2 imply that $T(d)=\left\lceil\frac{d}{2}\right\rceil$ for all integers $d \geq 1$.
One expects that for specific norms better estimates are valid. We have proved this in some cases. The unit ball of the norm ℓ_{p}^{d} will be denoted by B_{p}^{d}. We have the following results in the cases $p=1,2, \infty$.

https://daneshyari.com/en/article/4598670

Download Persian Version:

https://daneshyari.com/article/4598670

Daneshyari.com

[^0]: * Corresponding author at: Rényi Institute of Mathematics, Hungarian Academy of Sciences, PO Box 127, 1364 Budapest, Hungary.

 E-mail addresses: ambrus@renyi.hu (G. Ambrus), barany@renyi.hu (I. Bárány), victor_grinberg@yahoo.com (V. Grinberg).

