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exists a subset U of V consisting of k elements such that
I>",cu vl < [d/2]. We also prove that this bound is sharp in

MSC: general. We improve the estimate to O(+v/d) for the Euclidean
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1. Definitions, notation, results

We consider the real d-dimensional vector space R? with a norm ||.|| whose unit ball
is B. For a finite set U C R?, |U| stands for the cardinality of U, and s(U) for the sum

of the elements of U, so s(U) = >_,, iy u, and s(0) = 0 of course.
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In 1914 Steinitz [12] proved that, in the case of the Euclidean norm, for every finite
set V .C B with |[V| =n and s(V) = 0, there exists an ordering vy, ..., v, of the vectors
in V such that all partial sums have norm at most 2d, that is

max < 2d.

k=1,...,n

k
v
1

It is important here that the bound 2d does not depend on n, the size of V. Steinitz’s
result implies that for every norm and every finite V' C B with s(V) = 0 there is an
ordering along which all partial sums are bounded by a constant that depends only
on B. Let S(B) denote the smallest such constant for a given norm with unit ball B,
and set S(d) = sup S(B) where the supremum is taken over all norms in R¢. The best
known bounds on S(d) are: S(d) < d, proved by Sevastyanov (9], and by Grinberg and
Sevastyanov [7], and S(d) > %, which is shown by an example coming from the ¢;
norm [7]. For specific norms, stronger results may hold. In particular, for ¢5 and £, it
is conjectured that the right order of magnitude of S(B) is v/d — although not even o(d)
is known.

Steinitz’s result immediately implies that for every finite set V' C B with s(V) = 0 and
every integer k, 0 < k < |V|, there is a subset U C V such that |U| = k and ||s(U)|| is not
greater than a constant depending only on d, B, k, for instance S(B) is such a constant.
Let T(B, k) be the smallest constant with this property, set T(B) = sup, T'(B, k), and
T(d) = sup T(B) where the supremum is taken over all norms in R%. It is evident that
T(B,k) < k.

In this paper we investigate T(B, k), T(B) and T'(d). Here come our main results.
First, the estimate for general norms.

Theorem 1. Let B be the unit ball of an arbitrary norm on R?. For any finite set V C B
with s(V) = 0, and for any k < |V|, there exists a subset U C V with k elements, so
that

In other words, T(d) < [g]

Theorem 2. For every d > 1, there exists a norm in R? with unit ball B, so that T(B, k) =
[4] for infinitely many values of k. Also, T(B,k) =k for all k < |2].

Theorems 1 and 2 imply that T'(d) = [g] for all integers d > 1.

One expects that for specific norms better estimates are valid. We have proved this in
some cases. The unit ball of the norm Eg will be denoted by Bg. We have the following
results in the cases p = 1,2, co.
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