On energy of line graphs

Kinkar Ch. Das ${ }^{a, *}$, Seyed Ahmad Mojallal ${ }^{\text {a }}$, Ivan Gutman ${ }^{\mathrm{b}, \mathrm{c}}$
${ }^{\text {a }}$ Department of Mathematics, Sungkyunkwan University, Suwon 440-746,
Republic of Korea
${ }^{\text {b }}$ Faculty of Science, University of Kragujevac, P. O. Box 60, 34000 Kragujevac, Serbia
${ }^{\text {c }}$ State University of Novi Pazar, Novi Pazar, Serbia

A R T I C L E I N F O

Article history:

Received 22 December 2015
Accepted 3 March 2016
Available online 14 March 2016
Submitted by R. Brualdi

MSC:

05C50
15A18

Keywords:

Graph spectrum
Signless Laplacian spectrum (of graph)
Energy (of graph)
Line graph

Abstract

The energy $\mathcal{E}(G)$ of a simple graph G is the sum of absolute values of the eigenvalues of its adjacency matrix. The line graph of G is denoted by L_{G}. We obtain a relation between $\mathcal{E}\left(L_{G}\right)$ and $\mathcal{E}(G)$, and establish bounds on $\mathcal{E}\left(L_{G}\right)$. Moreover, we present results pertaining to equienergetic and hyperenergetic graphs.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we consider simple, undirected and unweighted graphs. Let $G=(V, E)$ be such a graph with vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and edge set $E(G)$, where

[^0]$|V(G)|=n$ and $|E(G)|=m$. For $v_{i} \in V(G)$, let d_{i} be the degree of the vertex v_{i}. The minimum vertex degree is denoted by $\delta=\delta(G)$. A vertex is said to be pendent if its neighborhood contains exactly one vertex. An edge is said to be pendent if one of its end vertices is pendent. An isolated vertex is a vertex with degree zero, that is, a vertex that is not an endpoint of any edge. Let p and s be, respectively, the number of pendent and isolated vertices of the graph G. In addition, let $\mathbf{A}(G)$ be the adjacency matrix of G and $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n-1} \geq \lambda_{n}$ denote the eigenvalues of $\mathbf{A}(G)$. Sometimes, by convenience, we write $\lambda_{i}=\lambda_{i}(G)$.

The energy of the graph G is defined as

$$
\mathcal{E}(G)=\sum_{i=1}^{n}\left|\lambda_{i}\right|
$$

Its mathematical properties were extensively investigated, see the book [29], the recent articles $[13,19,27,28,30,36]$ and the references cited therein. The positive (resp. negative) inertia of the graph G, denoted by ν^{+}(resp. ν^{-}), is the number of the positive (resp. negative) eigenvalues of $\mathbf{A}(G)$. The rank of a graph G is the rank of its adjacency matrix $\mathbf{A}(G)$, equal to $\nu^{+}+\nu^{-}$. Recall that $\nu^{+} \geq 1$ holds if and only if the underlying graph has at least one edge.

Let $\mathbf{L}(G)=\mathbf{D}(G)-\mathbf{A}(G)$ and $\mathbf{Q}(G)=\mathbf{D}(G)+\mathbf{A}(G)$ be, respectively, the Laplacian matrix $[20,21,31]$ and the signless Laplacian matrix $[5,7,8]$ of the graph G, where $\mathbf{D}(G)$ is the diagonal matrix of vertex degrees. The eigenvalues of $\mathbf{L}(G)$ and $\mathbf{Q}(G)$ will be denoted by $\mu_{1} \geq \mu_{2} \geq \cdots \geq \mu_{n-1} \geq \mu_{n}=0$ and $q_{1} \geq q_{2} \geq \cdots \geq q_{n-1} \geq q_{n}$, respectively. Then the Laplacian energy and the signless Laplacian energy of G are defined as

$$
L E=L E(G)=\sum_{i=1}^{n}\left|\mu_{i}-\frac{2 m}{n}\right| \quad \text { and } \quad L E^{+}=L E^{+}(G)=\sum_{i=1}^{n}\left|q_{i}-\frac{2 m}{n}\right|
$$

respectively. The Laplacian energy is nowadays reasonably well elaborated (see [10,11,24, 33] and the references cited therein). The signless Laplacian energy was until now studied only to a limited extent $[1,11]$. Moreover, $L E^{+}(G)=L E(G)$ for bipartite graphs G.

The line graph L_{G} of the graph G is the graph whose vertex set is in one-to-one correspondence with the set of edges of G, where two vertices of L_{G} are adjacent if and only if the corresponding edges in G have a vertex in common [25]. The energy of line graph and its relations with other graph energies were earlier studied in [12,23].

As usual, K_{n}, C_{n}, P_{n}, and $K_{1, n-1}$, denote, respectively, the complete graph, cycle, path and star on n vertices. For other undefined notations and terminology from graph theory, the readers are referred to [3].

The paper is organized as follows. In Section 2, we give a list of some previously known results. In Section 3, we obtain a relation between $\mathcal{E}\left(L_{G}\right)$ and $\mathcal{E}(G)$. In Section 4, we establish bounds on $\mathcal{E}\left(L_{G}\right)$ in terms of n, m, p, and s. Section 5 outlines results pertaining to equienergetic and hyperenergetic graphs.

https://daneshyari.com/en/article/4598671

Download Persian Version:

https://daneshyari.com/article/4598671

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: kinkardas2003@googlemail.com (K.C. Das), ahmad_mojalal@yahoo.com (S.A. Mojallal), gutman@kg.ac.rs (I. Gutman).

