The product distance matrix of a tree with matrix weights on its arcs

Hui Zhou ${ }^{\mathrm{a}, *}$, Qi Ding ${ }^{\mathrm{b}, \mathrm{c}}$
${ }^{\text {a }}$ School of Mathematical Sciences, Peking University, Beijing, 100871, PR China
b School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu, 730000, PR China
c Yonyou Network Technology Co., Ltd., Yonyou Software Park, No. 68 Beiqing Road, Haidian District, Beijing, 100094, China

A R T I C L E I N F O

Article history:

Received 2 January 2016
Accepted 5 March 2016
Available online 14 March 2016
Submitted by R. Brualdi

MSC:

15A15
05 C 05
16D10

Keywords:

Trees
Matrix weights
Product distance matrix
Determinant
Inverse
Module system

A B S TRACT

Let T be a tree with vertex set $[n]=\{1,2, \ldots, n\}$. For each $i \in[n]$, let m_{i} be a positive integer. An ordered pair of two adjacent vertices is called an arc. Each arc (i, j) of T has a weight $W_{i, j}$ which is an $m_{i} \times m_{j}$ matrix. For two vertices $i, j \in[n]$, let the unique directed path from i to j be $P_{i, j}=$ $x_{0}, x_{1}, \ldots, x_{d}$ where $d \geqslant 1, x_{0}=i$ and $x_{d}=j$. Define the product distance from i to j to be the $m_{i} \times m_{j}$ matrix $M_{i, j}=$ $W_{x_{0}, x_{1}} W_{x_{1}, x_{2}} \cdots W_{x_{d-1}, x_{d}}$. Let $N=\sum_{i=1}^{n} m_{i}$. The $N \times N$ product distance matrix \mathbf{D} of T is a partitioned matrix whose (i, j)-block is the matrix $M_{i, j}$. We give a formula for $\operatorname{det}(\mathbf{D})$. When $\operatorname{det}(\mathbf{D}) \neq 0$, the inverse of \mathbf{D} is also obtained. These generalize known results for the product distance matrix when either the weights are real numbers, or $m_{1}=m_{2}=\cdots=$ $m_{n}=s$ and the weights $W_{i, j}=W_{j, i}=W_{e}$ for each edge $e=\{i, j\} \in E(T)$.
© 2016 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

Let $n \geqslant 1$ be an integer, and let $[n]=\{1,2, \ldots, n\}$. Let T be a tree with vertex set $[n]$. Then for any two vertices $i, j \in[n]$, there is a unique path $P_{i, j}$ between i and j. The length (number of edges) of $P_{i, j}$ is called the distance between i and j and is denoted by $d_{i, j}$. The matrix $\mathrm{D}=\left(d_{i, j}\right)_{i, j \in[n]}$ is the distance matrix of T. Graham and Pollak [7] showed a very beautiful formula $\operatorname{det}(\mathrm{D})=(-1)^{n-1} 2^{n-2}(n-1)$. The determinant of D only depends on the number of vertices of the tree T, but has nothing to do with the structure of it. Yan and Yeh [9] gave a simple proof of Graham and Pollak's formula. When $n \geqslant 2$, D is invertible and Graham and Lovasz [6] gave a formula for the inverse of D.

As an analogue, the exponential distance matrix of the tree T was considered by researchers. Let $e_{1}, e_{2}, \ldots, e_{n-1}$ be all the edges of T. Let $q_{1}, q_{2}, \ldots, q_{n-1}$ be commutative indeterminates. For any two vertices $i, j \in[n]$, the exponential distance $e_{i, j}$ between i and j is defined as $\prod_{k \in P_{i, j}} q_{k}$. Since $q_{1}, q_{2}, \ldots, q_{n-1}$ commute with each other, then $e_{i, j}=e_{j, i}$. By convention, let $e_{i, i}=1$ for each $i \in[n]$. The exponential distance matrix of T is $\mathbf{E}=\left(e_{i, j}\right)_{i, j \in[n] \text {. }}$. Bapat and Sivasubramanian [4] gave the formula of the determinant of \mathbf{E}, $\operatorname{det}(\mathrm{E})=\prod_{j=1}^{n-1}\left(1-q_{j}^{2}\right)$, and the formula of the inverse of E . Let q be an indeterminate with $q^{0}=1$. When $q_{1}=q_{2}=\cdots=q_{n-1}=q$, then $e_{i, j}=q^{d_{i, j}}$. This special case was dealt by Bapat, Lat and Pati [2].

For product distance, it is natural to consider noncommutative weights from a ring. Let $s \geqslant 1$ be an integer, then all the $s \times s$ matrices over a commutative ring with identity form a natural example of noncommutative rings. For each $j=1,2, \ldots, n-1$, let the edge e_{j} have an $s \times s$ matrix weight W_{j}. Let $i, j \in[n]$ be two vertices of the tree T, and let $e_{k_{1}}, e_{k_{2}}, \ldots, e_{k_{r}}$ be the consecutive edges that occur on the unique path $P_{i, j}$ from i to j, where $r \geqslant 1$, then define $M_{i, j}=W_{k_{1}} W_{k_{2}} \cdots W_{k_{r}}$. For each $i \in[n]$, define $M_{i, i}$ to be the $s \times s$ identity matrix. The $n s \times n s$ partitioned matrix M , whose (i, j)-block is $M_{i, j}$, is the product distance matrix of the tree T with matrix weights. Bapat and Sivasubramanian [3] showed the formula of the determinant of $M, \operatorname{det}(M)=$ $\prod_{j=1}^{n-1} \operatorname{det}\left(I-W_{j}^{2}\right)$, and the formula of the inverse of M when $\operatorname{det}(\mathrm{M}) \neq 0$. Lemma 1 of [3] should have a little modification as follows. There exist a lower triangular matrix L whose diagonal blocks are identity matrices and an upper triangular matrix U whose diagonal blocks are identity matrices such that the matrix $L M U$ is a block diagonal matrix with diagonal blocks $I, I-W_{1}^{2}, I-W_{2}^{2}, \ldots, I-W_{n-1}^{2}$. This modification is implied by Lemma 1 or Lemma 4 of this paper.

In the context of classical distance, matrix weights were also considered by Bapat in [1], where an analogue of Graham and Pollak's formula is proved. General graphs with matrix weights on its arcs were considered by Sato, Mitsuhashi and Morita [8]. They defined a matrix-weighted L-function of such a graph and gave a determinant expression of it.

In this paper, we consider the product distance matrix of a tree with matrix weights on its arcs, where the matrices over a commutative ring with identity may not be square.

https://daneshyari.com/en/article/4598672

Download Persian Version:

https://daneshyari.com/article/4598672

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: zhouhpku13@pku.edu.cn (H. Zhou), dingq2011@lzu.edu.cn, dingqi0@yonyou.com (Q. Ding).

