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The comparisons of the Brualdi-type eigenvalue inclusion 
set provided by Bu et al. (2015) [3] and the Brauer-type 
eigenvalue inclusion set provided by Li and Li (2015) [6], are 
established. In particular, a condition such that the Brualdi-
type eigenvalue inclusion set is tighter than the Brauer-type 
eigenvalue inclusion set, is given.
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1. Introduction

Let C (R) denote the set of all complex (real) numbers and N = {1, 2, . . . , n}. We call 
A = (ai1···im) a complex (real) tensor of order m dimension n, denoted by A ∈ C

[m,n]

(A ∈ R
[m,n], resp.), if
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ai1···im ∈ C (R),

where ij = 1, . . . , n for j = 1, . . . , m. A real tensor A = (ai1···im) is called symmetric 
[7,8,11] if

ai1···im = aπ(i1···im), ∀π ∈ Πm,

where Πm is the permutation group of m indices. Furthermore, a real tensor of order m
dimension n is called the unit tensor, if its entries are δi1···im for i1, . . . , im ∈ N , where

δi1···im =
{

1, if i1 = · · · = im,

0, otherwise.

For a tensor A = (ai1···im) ∈ C
[m,n], and a vector x = (x1, x2, . . . , xn)T ∈ C

n, Axm−1

is defined as an n dimension vector whose ith component is

(Axm−1)i =
∑

i2,...,im∈N

aii2···imxi2 · · ·xim .

Moreover, if a complex number λ and a nonzero complex vector x = (x1, x2, . . . , xn)T
satisfy

Axm−1 = λx[m−1],

then λ is called an eigenvalue of A and x an eigenvector of A associated with λ, where

x[m−1] = (xm−1
1 , xm−1

2 , . . . , xm−1
n )T .

This definition was introduced by Qi in [8] where he assumed that A ∈ R
[m,n] is sym-

metric and m is even. Independently, in [7], Lim gave such a definition but restricted x
to be a real vector and λ to be a real number.

There has been extensive attention and interest in spectral theory of tensors [3,5–7,11]
and hypergraphs [9]. Qi [8] extend the well-known Geršgorin eigenvalue inclusion set 
[4,10] of matrices to real symmetric tensors of higher order. And this result can be easily 
generalized to general tensors [5,11].

Theorem 1. (See [5,8,11].) Let A = (ai1···im) ∈ C
[m,n]. Then

σ(A) ⊆ G(A) =
⋃
i∈N

Gi(A),

where σ(A) is the set of all the eigenvalues of A and

Gi(A) = {z ∈ C : |z − ai···i| ≤ ri(A)} , ri(A) =
∑

i2,...,im∈N,
δii2...im

=0

|aii2···im |.
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