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1. Introduction

Let C (R) denote the set of all complex (real) numbers and N = {1,2,...,n}. We call
A = (a4,...;,,) a complex (real) tensor of order m dimension n, denoted by A € Cl"™"
(A e R™ resp.), if
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iy gy, € C (R),

where i; = 1,...,n for j = 1,...,m. A real tensor A = (a;,..;,,) is called symmetric
7,8,11] if

Ay oeiiyy, = a’7‘r(i1-~im)aVﬂ- € HTTH

where II,, is the permutation group of m indices. Furthermore, a real tensor of order m
dimension n is called the unit tensor, if its entries are &;,...;,, for i1,... 4, € N, where

s [n = =i,
im0, otherwise.

For a tensor A = (a;,..;, ) € C™" and a vector z = (x1, xs,...,2,)T € C*, Az !
is defined as an n dimension vector whose ith component is

-1
(Az™N)i= Y iy Ty T
12, im EN
Moreover, if a complex number A and a nonzero complex vector x = (x1,Z2,...,2,)7
satisfy

Azt = \glm—1

then A is called an eigenvalue of A and = an eigenvector of A associated with A\, where

glm=1 = (m}"fl, :Eghl, O
This definition was introduced by Qi in [8] where he assumed that A € R™™ is sym-
metric and m is even. Independently, in [7], Lim gave such a definition but restricted x
to be a real vector and A to be a real number.

There has been extensive attention and interest in spectral theory of tensors [3,5-7,11]
and hypergraphs [9]. Qi [8] extend the well-known GerSgorin eigenvalue inclusion set
[4,10] of matrices to real symmetric tensors of higher order. And this result can be easily
generalized to general tensors [5,11].

Theorem 1. (See [5,8,11].) Let A = (aj,...;,,) € CI™". Then

o(A) € G(A) = | ] Gi(A),

iEN
where o(A) is the set of all the eigenvalues of A and

Gi(A) ={z€C: |z —aii| <r(A}, (A= D l|aiiyei,l-

12,.00, im €N,
Siig..ip =0
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