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We present a novel representation of rank constraints for 
non-square real matrices. We establish relationships with 
existing results and show that these are particular cases of our 
representation. One of these cases is a representation of the �0
pseudo-norm, which is used in sparse representation problems. 
Finally, we describe how our representation can be included 
in rank-constrained optimization and in rank-minimization 
problems.
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1. Introduction

Rank constraints find application in many areas including data modelling, systems and 
control, computer algebra, signal processing, psychometrics, machine learning, computer 
vision, among others [1,2]. In many applications, the notion of complexity of a model can 
be related to the rank of a particular matrix. For example, in factor analysis, the number 
of latent factors is equal to the rank of a covariance matrix. In system identification, the 
order of a rational system is equal to the rank of an infinite dimensional Hankel matrix.

Handling rank constraints is known to be difficult since the rank(·) function has un-
desirable features. In particular, the function is non-smooth, non-linear and non-convex. 
In applications based on optimization, where smoothness and convexity are widely ex-
ploited, the non-smoothness of the rank(·) function limits the tools that can be used in 
the optimization problem. On the other hand, non-smoothness is often tolerated in order 
to obtain other desirable properties, e.g. convexity, in some other part of the problem. 
This has motivated several authors [3–5,1,6] to find equivalent representations for rank 
constraints. These representations are equivalent ways to express a rank constraint of 
the form rank(A) ≤ r. These equivalent representations are aimed at overcoming the 
non-linearity, non-smoothness and/or non-convexity of the rank function. For example, 
one equivalent representation of a rank constraint for A ∈ R

m×n is given by

rank(A) ≤ r ⇐⇒ ∃ a full row rank matrix U ∈ R
(m−r)×m such that UA = 0 (1)

One advantage of the rank representation (1) is that it frees the matrix A to satisfy 
other structural constraint. In [1] the rank representation (1) has been used to impose 
a rank constraint in a structured matrix, such as a Hankel matrix. However, this rank 
constraint representation have some limitations. First, it transfers a rank constraint from 
a matrix A, to an auxiliary matrix U . Moreover, the rank of the matrix A is related to 
the size of the auxiliary matrix U . This last issue makes this approach inappropriate for 
problems where the rank to be constrained is selected in a dynamic way, e.g. online.

Other existing rank constraint representations are valid only for positive semidefinite 
matrices, see e.g. [3,5,4]. For example, consider the rank constraint representation in [3]
that establishes that, for a matrix A ∈ S

n
+, then

rank(A) ≤ r ⇐⇒ ∃W ∈ Φn,r such that trace(AW ) = 0 (2)

where

Φn,r = {W ∈ S
n, 0 � W � I, trace(W ) = n− r} (3)

This rank constraint representation eliminates of the rank function, but is only valid for 
positive semidefinite matrices. A detailed discussion of these and other rank representa-
tions is given in section 2.



Download English Version:

https://daneshyari.com/en/article/4598700

Download Persian Version:

https://daneshyari.com/article/4598700

Daneshyari.com

https://daneshyari.com/en/article/4598700
https://daneshyari.com/article/4598700
https://daneshyari.com

