

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

On the inverse of a tensor

Weihui Liu, Wen Li*

School of Mathematical Sciences, South China Normal University, Guangzhou 510631, PR China

ARTICLE INFO

ABSTRACT

Article history: Received 18 October 2015 Accepted 8 January 2016 Available online 29 January 2016 Submitted by R. Brualdi

MSC: 15A69

Keywords:Tensor Product of a tensor Left (right) inverse Similarity of tensors In this paper, we consider the left (right) inverse of a tensor. We characterize the existence of any order k left (right) inverse of a tensor, and show the expression of left (right) inverse of a tensor. We also present a result for the similarity of tensors. © 2016 Elsevier Inc. All rights reserved.

1. Introduction

Let \mathbb{C} be the complex field. For a positive integer n, let $\langle n \rangle = \{1, \dots, n\}$. An order mtensor consists of $n_1 \times \cdots \times n_m$ entries in \mathbb{C} :

$$\mathcal{A} = (a_{i_1 \cdots i_m}), a_{i_1 \cdots i_m} \in \mathbb{C}, i_j \in \langle n_j \rangle, j = 1, \cdots, m.$$

E-mail address: liwen@scnu.edu.cn (W. Li).

Corresponding author.

Sometimes, we write $a_{i_1\cdots i_m}$ as $a_{i_1\alpha}$, where $\alpha=i_2\cdots i_k$. When m=2, \mathcal{A} is an $n_1\times n_2$ matrix. If $n_1=\cdots=n_m=n$, \mathcal{A} is called an order m dimension n tensor. The set of all order m dimension n tensors is denoted by $\mathbb{C}^{[m,n]}$.

Now we introduce the following product of tensors.

Definition 1.1. (See [3].) Let $\mathcal{A} \in \mathbb{C}^{n_1 \times n_2 \times \cdots \times n_2}$ and $\mathcal{B} \in \mathbb{C}^{n_2 \times \cdots \times n_{k+1}}$ be two tensors of order $m(\geq 2)$ and $k(\geq 1)$, respectively. The product $\mathcal{A} \circ \mathcal{B}$ is the tensor \mathcal{C} of order (m-1)(k-1)+1 with entries:

$$c_{j\alpha_2\cdots\alpha_m} = \sum_{j_2,\cdots,j_m=1}^{n_2} (a_{jj_2\cdots j_m} \prod_{i=2}^m b_{j_i\alpha_i}),$$

where $j \in \langle n_1 \rangle$, $\alpha_2, \dots, \alpha_m \in \langle n_3 \rangle \times \dots \times \langle n_{k+1} \rangle$.

The tensor product defined in Definition 1.1 has the following properties [3,1]:

- (1) $(A_1 + A_2) \circ \mathcal{B} = A_1 \circ \mathcal{B} + A_2 \circ \mathcal{B}$, where $A_1, A_2 \in \mathbb{C}^{n_1 \times n_2 \times \cdots \times n_2}, \mathcal{B} \in \mathbb{C}^{n_2 \times \cdots \times n_{k+1}}$.
- (2) $A \circ (\mathcal{B}_1 + \mathcal{B}_2) = A \circ \mathcal{B}_1 + A \circ \mathcal{B}_2$, where $A \in \mathbb{C}^{n_1 \times n_2}, \mathcal{B}_1, \mathcal{B}_2 \in \mathbb{C}^{n_2 \times \cdots \times n_{k+1}}$.
- (3) $A \circ I_{n_2} = A$, $I_{n_2} \circ B = B$, where $A \in \mathbb{C}^{n_1 \times n_2 \times \cdots \times n_2}$, $B \in \mathbb{C}^{n_2 \times \cdots \times n_{k+1}}$, I_{n_2} is the identity matrix of order n_2 .
- (4) $(\mathcal{A} \circ \mathcal{B}) \circ \mathcal{C} = \mathcal{A} \circ (\mathcal{B} \circ \mathcal{C})$, where $\mathcal{A} \in \mathbb{C}^{n_1 \times n_2 \times \cdots \times n_2}, \mathcal{B} \in \mathbb{C}^{n_2 \times n_3 \times \cdots \times n_3}, \mathcal{C} \in \mathbb{C}^{n_3 \times \cdots \times n_r}$.

Let $\mathcal{D} = (d_{i_1 \cdots i_m}) \in \mathbb{C}^{[m,n]}$. We call the entry $d_{i\cdots i}$ a diagonal entry of a tensor \mathcal{D} , $i = 1, \cdots, n$. A tensor \mathcal{D} is said to be diagonal if all its non-diagonal entries are zero. The unit tensor $\mathcal{I} = (\delta_{i_1 \cdots i_m})$ of order m dimension n is a special diagonal tensor, i.e., its entries satisfy the following equation:

$$\delta_{i_1 \cdots i_m} = \begin{cases} 1 & , & i_1 = \cdots = i_m \\ 0 & , & else \end{cases}.$$

Sometimes, we denote the unit tensor of order m by \mathcal{I}_m .

Definition 1.2. (See [3].) Let $\mathcal{A} \in \mathbb{C}^{[m,n]}$, $\mathcal{B} \in \mathbb{C}^{[k,n]}$. If $\mathcal{A} \circ \mathcal{B} = \mathcal{I}$, then \mathcal{A} is called an order m left inverse of \mathcal{B} , and \mathcal{B} is called an order k right inverse of \mathcal{A} .

In [3], the authors presented some results for order 2 left (right) inverse of tensors. In this paper, we consider the order k left (right) inverse of a tensor, our results extend the corresponding ones in [3]. The contribution of this paper is given below:

- Conclude that A has left (right) inverse of order 2 if and only if A has left (right) inverse of order k;
- Give the expression of order k left (right) inverse of A;
- Give a result between reversibility and similarity of tensors.

Download English Version:

https://daneshyari.com/en/article/4598723

Download Persian Version:

https://daneshyari.com/article/4598723

<u>Daneshyari.com</u>