

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

Partial isometries and pseudoinverses in semi-Hilbertian spaces

LINEAR

Applications

Guillermina Fongi^{a,1}, M. Celeste Gonzalez^{a,b,*,1}

 ^a Instituto Argentino de Matemática "Alberto P. Calderón", Saavedra 15, Piso 3 (1083), Buenos Aires, Argentina
^b Instituto de Ciencias, Universidad Nacional de General Sarmiento, Argentina

ARTICLE INFO

Article history: Received 16 October 2015 Accepted 16 January 2016 Available online 1 February 2016 Submitted by P. Semrl

MSC: 46C05 47B50

Keywords: Semi-Hilbertian spaces Partial isometries Pseudoinverses

ABSTRACT

In this article the concepts of partial isometries, normal partial isometries and generalized projections in the context of operators defined on a semi-Hilbertian space are developed. In particular, we analyze the relationship between these operators and different notions of pseudoinverses in semi-Hilbertian spaces. Finally, we apply the results obtained to describe the set of weighted projections into closed subspaces. © 2016 Elsevier Inc. All rights reserved.

1. Introduction

Let \mathcal{H} be a Hilbert space with inner product \langle , \rangle and $L(\mathcal{H})$ the algebra of bounded linear operators on \mathcal{H} . If $A \in L(\mathcal{H})$ is positive (semi-definite) and \langle , \rangle_A is the semi-inner product on \mathcal{H} defined by $\langle \xi, \eta \rangle_A = \langle A\xi, \eta \rangle$ for all $\xi, \eta \in \mathcal{H}$ then $(\mathcal{H}, \langle , \rangle_A)$ is called

^{*} Corresponding author at: Instituto Argentino de Matemática "Alberto P. Calderón", Saavedra 15, Piso 3 (1083), Buenos Aires, Argentina.

E-mail addresses: gfongi@conicet.gov.ar (G. Fongi), celeste.gonzalez@conicet.gov.ar (M.C. Gonzalez).

 $^{^{1}\,}$ The authors were supported in part by PIP 11220120100426 (CONICET).

In this article we continue with the study of partial isometries in the context of semi-Hilbertian spaces that began in [3] and followed in [2]. Recall that $T \in L(\mathcal{H})$ is a partial isometry if $||T\xi|| = ||\xi||$ for all $\xi \in N(T)^{\perp}$, where N(T) denotes the nullspace of T. The following equivalent conditions are well-known for $T \in L(\mathcal{H})$:

- 1. T is a partial isometry;
- 2. T^*T is an idempotent operator;
- 3. TT^* is an idempotent operator;
- 4. $TT^*T = T;$
- 5. $T^*TT^* = T^*;$
- 6. $T^* = T^{\dagger};$
- 7. $T^*\eta$ is the unique least square solution with minimal norm of the equation $T\xi = \eta$ for all $\xi \in \mathcal{H}$;

where T^* and T^{\dagger} denote the adjoint operator of T and the Moore–Penrose inverse of T, respectively.

Given a positive operator $A \in L(\mathcal{H})$, an operator $T \in L(\mathcal{H})$ is an A-partial isometry if $||T\xi||_A = ||\xi||_A$ for all $\xi \in N(AT)^{\perp_A}$; where $||\xi||_A = \langle \xi, \xi \rangle_A^{1/2}$ is the seminorm on \mathcal{H} induced by A and $N(AT)^{\perp_A}$ denotes the orthogonal complement of N(AT) with respect to \langle , \rangle_A . However this definition does not allow to ensure that an A-partial isometry admits an A-adjoint operator. Therefore, it is not trivial how to extend the equivalences 1 to 7 above to A-partial isometries.

One of the main goals of this article is to analyze whether the equivalences stated above for partial isometries are still valid in the context of semi-Hilbertian spaces. For this purpose we deal with A-partial isometries that admit A-adjoint and we fix a distinguished one. There is a preliminary study in this direction. In [3] an equivalence like $1 \leftrightarrow 2$ above is shown in the context of semi-Hilbertian spaces under different hypotheses, for example the existence of an A-selfadjoint idempotent with a fixed closed range; or the closedness of the range of A. Later, in [2] the relationship between A-partial isometries and generalized inverses is investigated. In particular, the connection between A-partial isometries and A-generalized inverses is described. Here, the A-generalized inverses will play the roll of the Moore–Penrose inverses in the semi-Hilbertian space $(\mathcal{H}, \langle , \rangle_A)$. This study is related to equivalences $1 \leftrightarrow 4 \leftrightarrow 6$ above. In Proposition 3.4 we study equivaDownload English Version:

https://daneshyari.com/en/article/4598729

Download Persian Version:

https://daneshyari.com/article/4598729

Daneshyari.com