

Contents lists available at [ScienceDirect](http://www.ScienceDirect.com/)

Linear Algebra and its Applications

www.elsevier.com/locate/laa

Distribution of the eigenvalues of a random system of homogeneous polynomials

LINEAR ALGEBRA and Its ana
Applications

Paul Breiding [∗]*,*¹, Peter Bürgisser [∗]*,*¹

Institute of Mathematics, Technische Universität Berlin, Germany

A R T I C L E I N F O A B S T R A C T

Article history: Received 13 July 2015 Accepted 15 February 2016 Available online 27 February 2016 Submitted by V. Mehrmann

MSC: 15A18 15A69 60D05

Keywords: Tensors Eigenvalues Eigenvalue distribution Random polynomials Computational algebraic geometry

Let $f = (f_1, \ldots, f_n)$ be a system of *n* complex homogeneous polynomials in *n* variables of degree *d*. We call $\lambda \in \mathbb{C}$ an eigenvalue of *f* if there exists $v \in \mathbb{C}^n \setminus \{0\}$ with $f(v) = \lambda v$, generalizing the case of eigenvalues of matrices $(d = 1)$. We derive the distribution of λ when the f_i are independently chosen at random according to the unitary invariant Weyl distribution and determine the limit distribution for $n\to\infty.$ © 2016 Elsevier Inc. All rights reserved.

1. Introduction

The theory of eigenvalues and eigenvectors of matrices is a well-studied subject in mathematics with a wide range of application. However, attempts to generalize this concept to homogeneous polynomial systems of higher degree have only been made very

* Corresponding authors.

E-mail addresses: breiding@math.tu-berlin.de (P. Breiding), pbuerg@math.tu-berlin.de (P. Bürgisser). ¹ Partially supported by DFG research grant BU 1371/2-2.

<http://dx.doi.org/10.1016/j.laa.2016.02.020> 0024-3795/© 2016 Elsevier Inc. All rights reserved. recently, motivated by tensor analysis [\[12,13\],](#page--1-0) spectral hypergraph theory [\[9\]](#page--1-0) or optimization [\[10\].](#page--1-0) An overview on recent publications can be found in [\[11\],](#page--1-0) where the authors use the term "spectral theory of tensors".

Following Cartwright and Sturmfels, who in [\[4\]](#page--1-0) adapt Qi's definition of E-eigenvalues, we say that a pair $(v, \lambda) \in (\mathbb{C}^n \setminus \{0\}) \times \mathbb{C}$ is an *eigenpair* of a system $f := (f_1, \ldots, f_n)$ of *n* complex homogeneous polynomials of degree *d* in the variables X_1, \ldots, X_n if $f(v) = \lambda v$. We call *v* an eigenvector and λ an eigenvalue of *f*. If in addition $v^T \overline{v} = 1$, we call the pair (v, λ) normalized.

By [7, [Theorem](#page--1-0) 1.3] we expect the task of computing eigenvalues of a given system to be hard. It is therefore natural to ask for the distribution of the eigenvalues, when the system *f* is random.

In the case $d = 1$ we obtain the definition of eigenpairs of matrices. In [\[5\]](#page--1-0) Ginibre assumes the entries of a complex matrix $A = (a_{i,j})$ to be independently distributed with density $\pi^{-1} \exp(-|a_{i,j}|^2)$ and describes the distribution of an eigenvalue λ , that is chosen uniformly at random from the *n* eigenvalues of *A*.

Can Ginibre's results be extended to arbitrary degree *d*? The answer is yes and provided in this paper. Let us call two eigenpairs (v, λ) , (w, η) *equivalent* if there exists some $t \in \mathbb{C} \setminus \{0\}$, such that $(v, \lambda) = (tw, t^{d-1}\eta)$. Note that if both (v, λ) and $(w, \eta) \in \mathcal{C}$ are normalized, then we must have $|t| = 1$. This implies that the intersection of an equivalence class with the set of normalized eigenpairs of f is a circle, that we assume to have volume 2π . Cartwright and Sturmfels point out in [4, [Theorem 1\]](#page--1-0) that if $d > 1$, the number of equivalence classes of eigenpairs of a generic f is $D(n, d) :=$ $(d^{n}-1)/(d-1).$

We define a probability distribution on the space of eigenvalues as follows:

- 1. For each $1 \leq i \leq n$ choose f_i independently at random with the density π^{-k} exp(- $||f_i||^2$), where $k := \binom{n-1+d}{d}$. Here $|| ||$ is the unitary invariant norm on the space of homogeneous polynomials of degree *d* defined in Section [3,](#page--1-0) see also [\[3,](#page--1-0) sec. [16.1\].](#page--1-0) (The resulting distribution of the f_i is sometimes called the Weyl distribution.)
- 2. Among the $D(n,d)$ many equivalence classes C of eigenpairs of f, choose one uniformly at random.
- 3. Choose an normalized eigenpair $(v, \lambda) \in \mathcal{C}$ uniformly at random.
- 4. Apply the projection $(v, \lambda) \mapsto \lambda$.

We denote by $\rho^{n,d}: \mathbb{C} \to \mathbb{R}_{\geq 0}, \lambda \mapsto \rho^{n,d}(\lambda)$ the density of the resulting probability distribution. Observe that if $d = 1$, then $\rho^{n,1}$ is the density of Ginibre's distribution.

The unitary invariance of $|| \cdot ||^2$ implies that $\rho^{n,d}(\lambda)$ only depends on $|\lambda|$, but not on the argument of λ . We therefore introduce the following notation:

$$
R := 2\left|\lambda\right|^2. \tag{1.1}
$$

Download English Version:

<https://daneshyari.com/en/article/4598739>

Download Persian Version:

<https://daneshyari.com/article/4598739>

[Daneshyari.com](https://daneshyari.com)