

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

Distribution of the eigenvalues of a random system of homogeneous polynomials

LINEAR

lications

Paul Breiding^{*,1}, Peter Bürgisser^{*,1}

Institute of Mathematics, Technische Universität Berlin, Germany

A R T I C L E I N F O

Article history: Received 13 July 2015 Accepted 15 February 2016 Available online 27 February 2016 Submitted by V. Mehrmann

MSC: 15A18 15A69 60D05

Keywords: Tensors Eigenvalues Eigenvalue distribution Random polynomials Computational algebraic geometry

ABSTRACT

Let $f = (f_1, \ldots, f_n)$ be a system of n complex homogeneous polynomials in n variables of degree d. We call $\lambda \in \mathbb{C}$ an eigenvalue of f if there exists $v \in \mathbb{C}^n \setminus \{0\}$ with $f(v) = \lambda v$, generalizing the case of eigenvalues of matrices (d = 1). We derive the distribution of λ when the f_i are independently chosen at random according to the unitary invariant Weyl distribution and determine the limit distribution for $n \to \infty$. \odot 2016 Elsevier Inc. All rights reserved.

1. Introduction

The theory of eigenvalues and eigenvectors of matrices is a well-studied subject in mathematics with a wide range of application. However, attempts to generalize this concept to homogeneous polynomial systems of higher degree have only been made very

* Corresponding authors.

E-mail addresses: breiding@math.tu-berlin.de (P. Breiding), pbuerg@math.tu-berlin.de (P. Bürgisser). ¹ Partially supported by DFG research grant BU 1371/2-2.

 $\label{eq:http://dx.doi.org/10.1016/j.laa.2016.02.020} 0024-3795/©$ 2016 Elsevier Inc. All rights reserved.

recently, motivated by tensor analysis [12,13], spectral hypergraph theory [9] or optimization [10]. An overview on recent publications can be found in [11], where the authors use the term "spectral theory of tensors".

Following Cartwright and Sturmfels, who in [4] adapt Qi's definition of E-eigenvalues, we say that a pair $(v, \lambda) \in (\mathbb{C}^n \setminus \{0\}) \times \mathbb{C}$ is an *eigenpair* of a system $f := (f_1, \ldots, f_n)$ of ncomplex homogeneous polynomials of degree d in the variables X_1, \ldots, X_n if $f(v) = \lambda v$. We call v an eigenvector and λ an eigenvalue of f. If in addition $v^T \overline{v} = 1$, we call the pair (v, λ) normalized.

By [7, Theorem 1.3] we expect the task of computing eigenvalues of a given system to be hard. It is therefore natural to ask for the distribution of the eigenvalues, when the system f is random.

In the case d = 1 we obtain the definition of eigenpairs of matrices. In [5] Ginibre assumes the entries of a complex matrix $A = (a_{i,j})$ to be independently distributed with density $\pi^{-1} \exp(-|a_{i,j}|^2)$ and describes the distribution of an eigenvalue λ , that is chosen uniformly at random from the *n* eigenvalues of *A*.

Can Ginibre's results be extended to arbitrary degree d? The answer is yes and provided in this paper. Let us call two eigenpairs (v, λ) , (w, η) equivalent if there exists some $t \in \mathbb{C} \setminus \{0\}$, such that $(v, \lambda) = (tw, t^{d-1}\eta)$. Note that if both (v, λ) and $(w, \eta) \in \mathcal{C}$ are normalized, then we must have |t| = 1. This implies that the intersection of an equivalence class with the set of normalized eigenpairs of f is a circle, that we assume to have volume 2π . Cartwright and Sturmfels point out in [4, Theorem 1] that if d > 1, the number of equivalence classes of eigenpairs of a generic f is D(n, d) := $(d^n - 1)/(d - 1)$.

We define a probability distribution on the space of eigenvalues as follows:

- 1. For each $1 \leq i \leq n$ choose f_i independently at random with the density $\pi^{-k} \exp(-\|f_i\|^2)$, where $k := \binom{n-1+d}{d}$. Here $\|\|\|$ is the unitary invariant norm on the space of homogeneous polynomials of degree d defined in Section 3, see also [3, sec. 16.1]. (The resulting distribution of the f_i is sometimes called the Weyl distribution.)
- 2. Among the D(n,d) many equivalence classes C of eigenpairs of f, choose one uniformly at random.
- 3. Choose an normalized eigenpair $(v, \lambda) \in \mathcal{C}$ uniformly at random.
- 4. Apply the projection $(v, \lambda) \mapsto \lambda$.

We denote by $\rho^{n,d} : \mathbb{C} \to \mathbb{R}_{\geq 0}, \lambda \mapsto \rho^{n,d}(\lambda)$ the density of the resulting probability distribution. Observe that if d = 1, then $\rho^{n,1}$ is the density of Ginibre's distribution.

The unitary invariance of $|| ||^2$ implies that $\rho^{n,d}(\lambda)$ only depends on $|\lambda|$, but not on the argument of λ . We therefore introduce the following notation:

$$R := 2 \left| \lambda \right|^2. \tag{1.1}$$

Download English Version:

https://daneshyari.com/en/article/4598739

Download Persian Version:

https://daneshyari.com/article/4598739

Daneshyari.com