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We square operator Pólya–Szegö and Diaz–Metcalf type 
inequalities as follows: If operator inequalities 0 < m2

1 ≤
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1 and 0 < m2
2 ≤ B ≤ M2

2 hold for some positive 
real numbers m1 ≤ M1 and m2 ≤ M2, then for every unital 
positive linear map Φ the following inequalities hold:
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1. Introduction

Let B(H ) denote the C∗-algebra of all bounded linear operators on a complex Hilbert 
space (H , 〈·, ·〉). Throughout the paper, a capital letter means an operator in B(H ). 
If dim H = n, then B(H ) can be identified with the space Mn of all n × n complex 
matrices. We identify a scalar with the identity operator I multiplied by this scalar. An 
operator A is called positive if 〈Ax, x〉 ≥ 0 for all x ∈ H , and we then write A ≥ 0. An 
operator A is said to be strictly positive (denoted by A > 0) if it is a positive invertible 
operator. For self-adjoint operators A, B ∈ B(H ), we say B ≥ A if B−A ≥ 0. For strictly 
positive operators, A2 ≤ k2B2 for some constant k if and only if (AB−1)∗(AB−1) ≤ k2

and this occurs if and only if ‖AB−1‖ ≤ k. A linear map Φ : B(H ) → B(K ) is called 
positive if A ≥ 0 implies Φ(A) ≥ 0. If this implication holds for > instead of ≥, we say 
that Φ is strictly positive. It is said to be unital if Φ preserves the identity operator. The 
operator norm is denoted by ‖ · ‖. For A, B > 0, the operator geometric mean A�B is 
defined by A�B = A

1
2 (A− 1

2BA− 1
2 ) 1

2A
1
2 . Using a standard limit argument, this notion 

can be extended for positive operators A, B. The geometric mean operation is monotone, 
in the sense that C1 ≤ D1 and C2 ≤ D2 imply that C1�C2 ≤ D1�D2.

Moslehian et al. [12, Theorem 2.1] gave operator Pólya–Szegö inequality (see also [8]
for an interesting proof for matrices) and Diaz–Metcalf type inequality as follows:

Theorem 1.1. Let Φ be a positive linear map. If 0 < m2
1 ≤ A ≤ M2

1 and 0 < m2
2 ≤ B ≤

M2
2 for some positive real numbers m1 ≤ M1 and m2 ≤ M2, then

Φ(A)�Φ(B) ≤ α · Φ(A�B), (1.1)

where
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2
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.

Theorem 1.2. Let Φ be a positive linear map. If 0 < m2
1 ≤ A ≤ M2

1 and 0 < m2
2 ≤

B ≤ M2
2 for some positive real numbers m1 ≤ M1 and 0 < m2 ≤ M2, then the following 

inequality holds:

M2m2

M1m1
Φ(A) + Φ(B) ≤

(
M2

m1
+ m2
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)
Φ(A�B). (1.2)

It is well known that ts for any 0 ≤ s ≤ 1 is operator monotone but not so is t2; 
see [13]. However, Fujii et al. [5, Theorem 6] used the Kantorovich inequality to show 
that t2 is order preserving in a certain sense as follows:

Theorem 1.3. Let 0 < m ≤ A ≤ M and A ≤ B. Then

A2 ≤ (M + m)2

4Mm
B2.
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