

Upper bounds on the Laplacian spread of graphs

Enide Andrade ^a*,*∗, Helena Gomes ^a*,*^b, María Robbiano ^c, Jonnathan Rodríguez^c

^a *Center for Research and Development in Mathematics and Applications,* ^b Departamento de Ciências Exatas e Naturais, Escola Superior de Educação de Viseu, Instituto Politécnico de Viseu, Portugal *Viseu, Instituto Politécnico de Viseu, Portugal* ^c *Departamento de Matemáticas, Universidad Católica del Norte, Antofagasta, Chile*

A R T I C L E I N F O A B S T R A C T

Article history: Received 16 April 2014 Accepted 10 November 2015 Available online 21 November 2015 Submitted by R. Brualdi

MSC: 05C50 15A18

Keywords: Graphs Laplacian matrix Matrix spread Laplacian spread

The Laplacian spread of a graph *G* is defined as the difference between the largest and the second smallest eigenvalue of the Laplacian matrix of *G*. In this work, an upper bound for this graph invariant, that depends on first Zagreb index, is given. Moreover, another upper bound is obtained and expressed as a function of the nonzero coefficients of the Laplacian characteristic polynomial of a graph.

© 2015 Elsevier Inc. All rights reserved.

1. Notation and preliminaries

By an (n, m) -graph $G = (\mathcal{V}(G), \mathcal{E}(G))$, for short $G = (\mathcal{V}, \mathcal{E})$, we mean an undirected simple graph on $|\mathcal{V}| = n$ vertices and $m = |\mathcal{E}|$ edges. If $e \in \mathcal{E}$ is the edge connecting

^{*} Corresponding author.

E-mail addresses: enide@ua.pt (E. Andrade), hgomes@ua.pt (H. Gomes), mrobbiano@ucn.cl (M. Robbiano), jrodriguez01@ucn.cl (J. Rodríguez).

vertices *u* and *v* we say that *u* and *v* are adjacent and the edge is denoted by $\{u, v\}$. The notation $u \sim v$ means that $\{u, v\} \in \mathcal{E}$. For $u \in \mathcal{V}$ the set of neighbors of *u*, $N_G(u)$, is the set of vertices adjacent to *u*. The cardinality of $N_G(u)$, d_u , is called the vertex degree of *u*. The smallest and largest vertex degrees of *G* are denoted by δ and Δ , respectively. A graph in which all vertex degrees are equal to *p* is regular of degree *p* (or *p*-regular). The path and the star with *n* vertices are denoted by *Pⁿ* and *Sn*, respectively. A *caterpillar graph* is a tree of order $n > 5$ such that by removing all the pendant vertices one obtains a path with at least two vertices. In this context the caterpillar, $T(q_1, \ldots, q_k)$ is obtained from a path P_k , with $k \geq 2$, by associating the central vertex of the star S_{q_i} $(1 \leq i \leq k)$ to the *i*-th vertex of the path P_k . The adjacency matrix $A(G)$ of a graph *G* with $V = \{v_1, v_2, \ldots, v_n\}$ is the square matrix of order *n*, whose (i, i) -entry is equal to 1 if v_i and v_j are adjacent, and 0 otherwise. The Laplacian matrix of G is given by $L(G) = D(G) - A(G)$ where $D(G)$ is the diagonal matrix whose (i, i) -entry is equal to the degree of $v_i \in V$. This matrix is positive semidefinite and 0 is always a Laplacian eigenvalue whose multiplicity corresponds to the number of connected components of *G* with **e**, the all ones vector, as an associated eigenvector. For spectral results on this matrix see, for instance, $[6,8]$. There are numerous results in the literature concerning upper and lower bounds on the largest eigenvalue of $L(G)$, see [\[15,19\].](#page--1-0)

If *B* is a real symmetric matrix, $\beta_i(B)$ (or simply β_i) and σ_B denote the *i*-th largest eigenvalue of *B* and the set of eigenvalues of *B*, respectively. The set of eigenvalues of $L(G)$ is denoted by $\sigma_L(G)$ and called the Laplacian spectrum of *G*. If β is an eigenvalue of *B* and **x** is one of its eigenvectors the pair (β, \mathbf{x}) is an eigenpair of *B*. From now on we represent the Laplacian eigenvalues of *G* by $\mu_1 \geq \mu_2 \geq \cdots \geq \mu_n = 0$. An important result in graph theory, see [\[19\],](#page--1-0) states that if *G* has at least one edge, $\Delta + 1 \leq \mu_1$, and if *G* is connected the equality is attained if and only if $\Delta = n - 1$. Considering *G*, an upper bound on Laplacian eigenvalues can be easily obtained, $\mu_1 \leq n$, see [\[2\].](#page--1-0) Among the most important Laplacian eigenvalues is the algebraic connectivity of *G*, defined as the second smallest Laplacian eigenvalue μ_{n-1} , [\[10\].](#page--1-0) Recently, the algebraic connectivity has received much attention, see [\[1,19,22,23\]](#page--1-0) and the references cited therein. A graph is connected if and only if $\mu_{n-1} > 0$, [\[10\].](#page--1-0)

2. The Laplacian spread of an arbitrary graph and some motivation

Let *B* be an $n \times n$ complex matrix with eigenvalues $\beta_1, \beta_2, \ldots, \beta_n$. The spread of *B* (or matricial spread) is defined by

$$
s(B) = \max_{i,j} |\beta_i - \beta_j|,
$$

where the maximum is taken over all pairs of eigenvalues of *B*. There is a considerable literature on this parameter, see for instance [\[13,18,21\].](#page--1-0) Suppose that $B \in \mathbb{C}^{n \times n}$ is a Hermitian complex matrix. For $\mathbf{x}, \mathbf{y} \in \mathbb{C}^n$, we denote by $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^* \mathbf{y}$, the inner product in \mathbb{C}^n and by $\|\mathbf{x}\| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$ the norm of **x**. Here, $|B| = \sqrt{trace(B^*B)}$ is the Frobenius

Download English Version:

<https://daneshyari.com/en/article/4598779>

Download Persian Version:

<https://daneshyari.com/article/4598779>

[Daneshyari.com](https://daneshyari.com/)