

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

On the distance and distance Laplacian eigenvalues of graphs

LINEAR

lications

Huiqiu Lin^{a,*}, Baoyindureng Wu^b, Yingying Chen^c, Jinlong Shu^c

^a Department of Mathematics, East China University of Science and Technology, Shanghai, PR China ^b College of Mathematics and System Sciences, Xinjiang University, Urumqi,

Xinjiang 830046, PR China

^c Department of Mathematics, East China Normal University, Shanghai, PR China

ARTICLE INFO

Article history: Received 5 August 2015 Accepted 10 November 2015 Available online 7 December 2015 Submitted by R. Brualdi

MSC: 05C50

Keywords: Graph Distance matrix Distance Laplacian matrix Distance Laplacian spectral radius

ABSTRACT

Let G = (V, E) be a simple graph with vertex set V(G) = $\{v_1, v_2, \ldots, v_n\}$ and edge set E(G). Let D(G) be the distance matrix of G. For a given nonnegative integer k, when n is sufficiently large with respect to k, we show that $\lambda_{n-k}(D) \leq -1$, thereby solving a problem proposed by Lin et al. (2014) [8]. The distance Laplacian spectral radius of a connected graph Gis the spectral radius of the distance Laplacian matrix of G, defined as

$$D^L(G) = Tr(G) - D(G),$$

where Tr(G) is the diagonal matrix of vertex transmissions of G. Aouchiche and Hansen (2014) [3] conjectured that $m(\lambda_1(D^L)) \leq n-2$ when $G \ncong K_n$, and the equality holds if and only if either $G \cong K_{1,n-1}$ or $G \cong K_{\frac{n}{2},\frac{n}{2}}$. In this paper, we confirm the conjecture.

© 2015 Elsevier Inc. All rights reserved.

* Corresponding author. E-mail address: huiqiulin@126.com (H. Lin).

http://dx.doi.org/10.1016/j.laa.2015.11.014 0024-3795/© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Let G be a simple graph with vertex set $V(G) = \{v_1, v_2, \ldots, v_n\}$ and edge set E(G), where |V(G)| = n, |E(G)| = m. Also let d_i be the degree of the vertex $v_i \in V(G)$. We always assume that the graph under consideration is connected when the problem is concerned with the distance. Let $A = (a_{ij})$ be the adjacency matrix of G where $a_{ij} = 1$ if $v_i v_j \in E(G)$ and $a_{ij} = 0$, otherwise. We use $\lambda_i(G)$ to denote the eigenvalues of A. Let G = (V, E) be a regular graph with n vertices and degree k. As usual, we use K_n and P_n to denote the complete graph and the path on n vertices, respectively. G is said to be strongly regular with parameters (n, k, a, c) if there are also integers a and c such that every two adjacent vertices have a common neighbors and every two non-adjacent vertices have c common neighbors. The distance between vertex v_i and v_j , denoted by $d_G(v_i, v_j)$, is the length of a shortest path from v_i to v_j . The diameter of a graph is the maximum distance between any two vertices of G. Let d be the diameter of G. The transmission $Tr(v_i)$ (or D_i) of vertex v_i is defined to be the sum of distances from v_i to all other vertices, that is,

$$Tr(v_i) = \sum_{v_j \in V(G)} d(v_i, v_j).$$

The distance matrix of G, denoted by D(G) or simply by D, is the symmetric real matrix with (i, j)-entry being $d_G(v_i, v_j)$ (or d_{ij}). Let $\lambda_1(D(G)) \geq \lambda_2(D(G)) \geq \cdots \geq \lambda_n(D(G))$ denote the spectra of D. The research for distance matrix can be dated back to the papers [4,5], which presented an interesting result that the determinant of the distance matrix of trees with order n is always $(-1)^{n-1}(n-1)2^{n-2}$, independent of the structure of the tree. Recently, the distance matrix of a graph has received increasing attention, see [6,7,12]. For more results on the distance matrix, you can refer to the excellent survey [1].

Lin et al. [8] showed that for a connected graph G of order $n, \lambda_{n-1}(D) \leq -1$ if $n \geq 4$ and $\lambda_{n-2}(D) \leq -1$ if $n \geq 7$. Furthermore, they proposed the following problem.

Problem 1. Given an integer k, when n is sufficiently large with respect to k, for any connected graph G of order n, does $\lambda_{n-k}(D) \leq -1$?

By establishing the following theorem, we answer the above problem in positive.

Theorem 1.1. Let D be the distance matrix of a connected graph G of order n. For a non-negative integer k, $\lambda_{n-k}(D) \leq -1$ provided n is sufficiently large with respect to k.

Obviously, $Tr(v_i)$ is the sum of *i*-th row of D(G). Let $Tr(G) = \text{diag}(Tr_G(v_1), Tr_G(v_2), \dots, Tr_G(v_n))$ be the diagonal matrix of vertex transmissions of G. Similar to the Laplacian matrix of a graph, the distance Laplacian matrix of G is introduced by Aouchiche and Hansen [2],

Download English Version:

https://daneshyari.com/en/article/4598787

Download Persian Version:

https://daneshyari.com/article/4598787

Daneshyari.com