

Contents lists available at ScienceDirect

Linear Algebra and its Applications

Some operator and trace function convexity theorems

Eric A. Carlen a,*,1, Rupert L. Frank b,2, Elliott H. Lieb c,3

- ^a Department of Mathematics, Hill Center, Rutgers University, 110 Frelinghuysen Road, Piscataway, NJ 08854-8019, United States
- ^b Department of Mathematics, Caltech, Pasadena, CA 91125, United States
- ^c Departments of Mathematics and Physics, Jadwin Hall, Princeton University, Washington Road, Princeton, NJ 08544, United States

ARTICLE INFO

Article history:
Received 5 February 2015
Accepted 6 November 2015
Available online 21 November 2015
Submitted by R. Brualdi

MSC: 47A63 94A17 15A99

Keywords: Operator convexity Operator concavity Trace inequality Rényi entropy

ABSTRACT

We consider trace functions $(A,B) \mapsto \operatorname{Tr}[(A^{q/2}B^pA^{q/2})^s]$ where A and B are positive $n \times n$ matrices and ask when these functions are convex or concave. We also consider operator convexity/concavity of $A^{q/2}B^pA^{q/2}$ and convexity/concavity of the closely related trace functional $\operatorname{Tr}[A^{q/2}B^pA^{q/2}C^r]$. The concavity questions are completely resolved, thereby settling cases left open by Hiai; the convexity questions are settled in many cases. As a consequence, the Audenaert–Datta Rényi entropy conjectures are proved for some cases.

© 2015 Elsevier Inc. All rights reserved.

^{*} Corresponding author.

E-mail address: carlen@math.rutgers.edu (E.A. Carlen).

Work partially supported by U.S. National Science Foundation grant DMS-1201354.

 $^{^2}$ Work partially supported by U.S. National Science Foundation grants PHY-1347399 and DMS-1363432

³ Work partially supported by U.S. National Science Foundation grant PHY-1265118.

1. Introduction

Let \mathcal{P}_n denote the set of $n \times n$ positive definite matrices. For $p, q, s \in \mathbb{R}$, define

$$\Phi_{p,q,s}(A,B) = \text{Tr}[(A^{q/2}B^pA^{q/2})^s] . \tag{1.1}$$

We are mainly interested in the convexity or concavity of the map $(A, B) \mapsto \Phi_{p,q,s}(A, B)$, but we are also interested in the *operator* convexity/concavity of $A^{q/2}B^pA^{q/2}$. When any of p, q or s is zero, the question of convexity is trivial, and we exclude these cases.

Given any $n \times n$ matrix K, and with p, q, s as above, define

$$\Psi_{K,p,q,s}(A,B) = \text{Tr}[(A^{q/2}K^*B^pKA^{q/2})^s], \qquad (1.2)$$

and note that

$$\Phi_{p,q,s}(A,B) = \Psi_{1,p,q,s}(A,B) . \tag{1.3}$$

The main question to be addressed here is this: For which non-zero values of p, q and s is $\Psi_{K,p,q,s}(A,B)$ jointly convex or jointly concave on $\mathcal{P}_n \times \mathcal{P}_n$ for all n and all K?

We begin with several simple reductions. Since invertible K are dense, it suffices to consider all invertible operators K. Then, for K invertible,

$$\Psi_{K,p,q,s}(A,B) = \Psi_{(K^*)^{-1},-p,-q,-s}(A,B) ,$$

and therefore it is no loss of generality to assume that s > 0. We always make this assumption in what follows.

Next, the convexity/concavity properties of $\Psi_{K,p,q,s}(A,B)$ are a consequence of those of $\Phi_{p,q,s}(A,B)$, and hence it suffices to study the special case K=1. In fact, more is true as stated in the following Lemma 1.1. These equivalences may be useful in other contexts. (For s=1 the equivalence of (1) and (4) is in [11] and the equivalence of (1) and (3) is in [4]; the arguments in those papers extend to all s, but we repeat them here for completeness.)

Lemma 1.1 (Equivalent formulations). The following statements are equivalent for fixed p, q, s.

- (1) The map $(A, B) \mapsto \Psi_{K,p,q,s}(A, B)$ is convex for all K and all n.
- (2) The map $(A, B) \mapsto \Psi_{K,p,q,s}(A, B)$ is convex for all unitary K and all n.
- (3) The map $(A, B) \mapsto \Psi_{1,p,q,s}(A, B) = \Phi_{p,q,s}(A, B)$ is convex for all n.
- (4) The map $A \mapsto \Psi_{K,p,q,s}(A,A)$ is convex for all K and all n.
- (5) The map $A \mapsto \Psi_{K,p,q,s}(A,A)$ is convex for all unitary K and all n.

The same is true if convex is replaced by concave in all statements.

Download English Version:

https://daneshyari.com/en/article/4598805

Download Persian Version:

https://daneshyari.com/article/4598805

<u>Daneshyari.com</u>