Non-commutative standard polynomials applied to matrices

Denis Serre

UMPA, UMR CNRS-ENS Lyon \# 5669, École Normale Supérieure de Lyon, 46, allée d'Italie, F-69364 Lyon cedex 07, France

A R T I C L E I N F O

Article history:

Received 30 June 2015
Accepted 4 November 2015
Available online 28 November 2015
Submitted by R. Brualdi

MSC:

15A24
15A27
15A60

Keywords:
Standard polynomial
Random matrices

Abstract

The Amitsur-Levitski Theorem tells us that the standard polynomial in $2 n$ non-commuting indeterminates vanishes identically over the matrix algebra $\mathbf{M}_{n}(K)$. For $K=\mathbb{R}$ or \mathbb{C} and $2 \leq r \leq 2 n-1$, we investigate how big $\mathcal{S}_{r}\left(A_{1}, \ldots, A_{r}\right)$ can be when A_{1}, \ldots, A_{r} belong to the unit ball. We privilege the Frobenius norm, for which the case $r=2$ was solved recently by several authors. Our main result is a closed formula for the expectation of the square norm. We also describe the image of the unit ball when $r=2$ or 3 and $n=2$.

© 2015 Elsevier Inc. All rights reserved.

1. The problem. First results

Let $r \geq 2$ be an integer. The standard polynomial in r non-commuting indeterminates x_{1}, \ldots, x_{r} is defined as usual by

$$
\mathcal{S}_{r}\left(x_{1}, \ldots, x_{r}\right):=\sum\left\{\epsilon(\sigma) x_{\sigma(1)} x_{\sigma(2)} \cdots x_{\sigma(r)}: \sigma \in \mathfrak{S}_{r}\right\}
$$

[^0]http://dx.doi.org/10.1016/j.laa.2015.11.003
0024-3795/® 2015 Elsevier Inc. All rights reserved.
where \mathfrak{S}_{r} is the symmetric group in r symbols and ϵ is the signature. Each monomial is a word in the letters x_{j}, affected by a sign ± 1. Despite its superficial similarity with the determinant of $r \times r$ matrices, \mathcal{S}_{r} is a completely different object: on the one hand, its arguments are non-commuting indeterminates, on the other hand, there are only r indeterminates instead of the r^{2} entries of a matrix. We list here elementary properties of \mathcal{S}_{r} :

1. \mathcal{S}_{r} is alternating.
2. $\mathcal{S}_{r+1}\left(x_{1}, \ldots, x_{r+1}\right)=\sum_{i}(-1)^{i+1} x_{i} \mathcal{S}_{r}\left(\hat{x}_{i}\right)$, where $\hat{x}_{i}:=\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{r+1}\right)$.
3. If r is even, and an x_{i} commutes with all other x_{j} 's, then $\mathcal{S}_{r}\left(x_{1}, \ldots, x_{r}\right)=0$. Mind that this is false if r is odd.

The first polynomial $x_{1} x_{2}-x_{2} x_{1}$ of the list is the commutator. When applied to the elements of an algebra \mathcal{A}, it leads us to distinguish between commutative and noncommutative algebras. More generally, the polynomials \mathcal{S}_{r} measure somehow the degree of non-commutativity of a given algebra. A classical theorem tells us that for a given matrix $A \in \mathbf{M}_{n}(\mathbb{C})$, the commutator \mathcal{S}_{2} vanishes identically over the algebra $\left\langle A, A^{*}\right\rangle$ (in other words, A is normal) if and only if A is unitarily diagonalizable. It is less known that $\mathcal{S}_{2 \ell}$ vanishes identically over the algebra $\left\langle A, A^{*}\right\rangle$ if and only if A is unitarily blockwise diagonalizable, where the diagonal blocks have at most size $\ell \times \ell$; see Exercise 324 in [10].

In addition, we have the theorem of Amitsur and Levitski [2], of which an elegant proof has been given by Rosset [8].

Theorem 1.1 (Amitsur-Levitski). Let K be a field (a commutative one, needless to say). The standard polynomial $\mathcal{S}_{2 n}$ of degree $2 n$ vanishes identically over $\mathbf{M}_{n}(K)$. However the standard polynomials of degree less than $2 n$ do not vanish identically.

In the sequel, we focus on the algebra $\mathbf{M}_{n}(K)(K=\mathbb{R}$ or $\mathbb{C})$ of real or complex matrices. A norm over $\mathbf{M}_{n}(K)$ is submultiplicative if it satisfies $\|A B\| \leq\|A\|\|B\|$. The main examples are operator norms

$$
\|A\|:=\sup _{x \in K^{n}, x \neq 0} \frac{|A x|}{|x|}
$$

where $|\cdot|$ is a given norm over K^{n}. One often says that $\|\cdot\|$ is induced by $|\cdot|$. In particular, $\|\cdot\|_{2}$ is the norm induced by the standard Euclidean/Hermitian norm. We are also interested in the Frobenius norm

$$
\|A\|_{F}:=\sqrt{\sum_{i, j}\left|a_{i j}\right|^{2}},
$$

https://daneshyari.com/en/article/4598808

Download Persian Version:
https://daneshyari.com/article/4598808

Daneshyari.com

[^0]: E-mail address: denis.serre@ens-lyon.fr.

