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1. Introduction

A matrix G € M, «n(F), F an arbitrary field, is right divisible by F' € Mpx,(F) if
G = HF for some H € M, x;(F). F is called a right divisor (or right factor) of G,
and H is called a right quotient of G and F (the remainder is always assumed to be
zero). Similar definitions hold for left division. Since in this paper we shall be inter-
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ested in square-zero quotients, both G and F' are assumed to be m x n unless stated
otherwise.

We begin by presenting necessary and sufficient conditions (in terms of rank, amongst
others) for F' to be a divisor of G with a square-zero quotient. Since the similarity
class of a square-zero matrix is completely determined by its rank, it is useful to also
investigate which ranks the square-zero quotients can have. Formulae are presented by
which square-zero quotients with every possible rank can be constructed. The preceding
theory is then used to extend the results of Novak [3] on square-zero factorization to
matrices over an arbitrary field. In particular, it is shown that

(i) an m X m matrix G over an arbitrary field F is a product of square-zero matrices if
and only if r(G) < %, and three is the least number of factors required in general,
and

(ii) G is a product of two square-zero matrices if and only if

n(G) — dim(N(G) N R(@)) > r(G)
equivalently,

G is similar to O,(g) ® G’ for some matrix G’ over F.

We now fix some notation. For a given matrix G € M, «,(F), it will sometimes be
useful to consider the linear mapping from F” to F'™ associated with G with respect
to the standard bases for F” and F™. This is also denoted by G (hence G(v) = Gv for
all v € F™) since the intended meaning will be clear from the context. We denote the
kernel (equivalently, null space) of G by N(G), the image (equivalently, range or column
space) of G by R(G), and their respective dimensions by n(G) and r(G). The row space
of G is denoted by row(G). Similarity in M, «,(F) is denoted by ~. A left (resp., right)
inverse of G € M,,xn(F), if it exists, is denoted by G (resp., GE). f F = C or F = R,
then the conjugate transpose of G is denoted by G* (note that G* = GT if F = R). The
restriction of a linear mapping T : V — W to a subspace U of V is denoted by Ty;. If
V =W, then U is T-invariant if T(U) C U; hence Ty is a linear operator on U. For a
real number r, let |r] denote the largest integer less than or equal to r. The difference
between two sets A and B is denoted by A — B,i.e. A— B={a € A:a ¢ B}.

2. Matrix division with a square-zero quotient

Lemma 1. Let G, F € My, «»(F), where F is a field, and let
™ = R([G F])® R(C) and R(G) + R(Fn(a)) = R(G) © R(B)

where both B € My, x«(F) and C € My,x.(F) are of full column rank. If H is a square-
zero right quotient of G and F, then
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