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This paper derives an asymptotic distribution for a correlation 
matrix in the context of a two-step monotone incomplete sam-
ple drawn from Np+q(μ, Σ), a multivariate normal population 
with mean μ and covariance matrix Σ. Based on the result, 
we perform hypothesis testing for the correlation matrix and 
investigate its accuracy using numerical simulations.
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1. Introduction

In multivariate analysis, one of basic matrices is a correlation matrix. In literature 
concerning the correlation matrix, Neudecker and Wesselman [11] derived an asymptotic 
distribution for normally distributed observations. Neudecker [10] obtained asymptotic 
distributions under non-normal distributional assumptions, and Kollo and Ruul [7] de-
rived multivariate density expansions. Furthermore, Aitkin et al. [1] discussed hypothesis 
testing for the correlation matrix.
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In practical data analysis, missing data often appear. Therefore, methods that can use 
missing data should be employed. These methods have been studied by many authors, 
including Anderson and Olkin [2], Srivastava [13], Little and Rubin [8], Kanda and 
Fujikoshi [5], and Chang and Richards [3,4].

In this paper, the asymptotic distribution for the correlation matrix is considered in 
the context of a two-step monotone incomplete sample drawn from Np+q(μ, Σ), which 
is a (p + q)-dimensional multivariate normal population with mean μ and covariance 
matrix Σ. By deriving the asymptotic distribution for the correlation matrix, we consider 
its estimation and can conduct hypothesis testing. We suppose the data are composed 
of N mutually independent observations consisting of a random sample of n complete 
observations and N − n additional observations on x alone. That is,(
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where x is a p × 1 vector, y is a q × 1 vector, and the symbol ∗ denotes the missing 
data. The data in (1) are usually referred to as a two-step monotone incomplete sample 
and show the simplest pattern available with the missing data. The maximum likelihood 
estimators (MLEs) of μ and Σ can be explicitly expressed and are given by Anderson and 
Olkin [2]. Properties of the MLE are discussed by Kanda and Fujikoshi [5] and Chang and 
Richards [3,4]. Tsukada [14] proposed an unbiased estimator for the covariance matrix Σ. 
Recently, studies for this sample have been actively conducted, such as Shutoh [12], 
Tsukada [14–16], Yamada et al. [17], and Yamada [18].

The remainder of the paper is structured as follows. Preliminary results are described 
in Section 2. Section 3 discusses the asymptotic properties for the correlation matrix. 
The accuracy of these results is investigated by performing numerical simulations in 
Section 4. Finally, Section 5 contains a brief summary and ends with a discussion on 
possible directions for future research.

2. Preliminary results

Assume observation (1) is available. The complete samples (x′
i,y

′
i)

′, i = 1, . . . , n are 
drawn from Np+q(μ, Σ), a multivariate normal population with mean μ = (μ′

1,μ
′
2)

′ and 
covariance matrix

Σ =
(

Σ11 Σ12
Σ21 Σ22

)
,

whereas the incomplete samples xi, i = n + 1, . . . , N are drawn from Np(μ1, Σ11). It 
is assumed that all N samples are mutually independent, and the data are missing 
at random (MAR) to ignore the missingness mechanism. Lu and Copas [9] noted that 
inference using the likelihood method is valid if and only if the missing data mechanism 
is MAR.
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