# On the spectral radius of trees with given independence number 

Chunyu Ji*, Mei Lu<br>Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China

## A R T I C L E I N F O

## Article history:

Received 26 May 2015
Accepted 16 September 2015
Available online 30 September 2015
Submitted by R. Brualdi

## MSC:

05C50
15A18

Keywords:
Tree
Spectral radius
Independence number

## A B S T R A C T

In the paper, we will determine the graphs with maximal spectral radius among all the trees with $n$ vertices and independence number $\alpha$ for $\left\lceil\frac{n}{2}\right\rceil \leq \alpha \leq n-1$.
© 2015 Elsevier Inc. All rights reserved.

## 1. Introduction

Let $G=(V, E)$ be a simple undirected graph with $n$ vertices. For $v \in V(G)$, we use $N_{G}(v)$ to denote the set of the neighbors of $v$ and set $d_{G}(v)=\left|N_{G}(v)\right|$. For a subgraph $H$ of $G$, let $N_{H}(v)=N_{G}(v) \cap V(H)$ and $d_{H}(v)=\left|N_{H}(v)\right|$ for $v \in V(G)$. If $S \subseteq V(G)$, then we will use $G[S]$ to denote the subgraph induced by $S$. A vertex of degree one is called a leaf. The edge incident with a leaf is known as a pendant edge. A vertex which has a leaf as its neighbor is known as a support vertex. We will use $G-x y$ to denote the

[^0]graph that arises from $G$ by deleting the edge $x y \in E(G)$. Similarly, $G+x y$ is a graph that arises from $G$ by adding an edge $x y \notin E(G)$, where $x, y \in V(G)$. We will use $\alpha(G)$ to denote the independence number of $G$ and $T_{n, \alpha}$ to denote the set of trees of order $n$ with independence number $\alpha$.

Let $A(G)$ be the adjacency matrix of a graph $G$. The spectral radius, $\rho(G)$, of $G$ is the largest eigenvalue of $A(G)$. When $G$ is connected, $A(G)$ is irreducible. By the PerronFrobenius Theorem, the spectral radius is simple and has a unique positive eigenvector. We will refer to such an eigenvector as the Perron vector of $G$. Let $D(G)$ be the degree matrix of a graph G. Then $Q(G)=D(G)+A(G)$ is known as the signless Laplacian matrix of G . The signless Laplacian spectral radius of $G$, denoted by $\lambda(G)$, is the largest eigenvalue of $Q(G)$.

The investigation on the spectral radius of graphs is an important topic in the theory of graph spectra. Recently, the problem concerning graphs with maximal or minimal spectral radius of a given class of graphs has been studied extensively (see [1-9]). Xu et al. [9] determined the graphs with minimal spectral radius among the graphs with independence number $\alpha \in\left\{1,2,\left\lceil\frac{n}{2}\right\rceil,\left\lceil\frac{n}{2}\right\rceil+1, n-3, n-2, n-1\right\}$. In addition, the relationship between spectral radius and independence number has been studied by many authors (see for examples [1,2,7]). In this paper, trees with maximal spectral radius in $T_{n, \alpha}$ for $\left\lceil\frac{n}{2}\right\rceil \leq \alpha \leq n-1$ are characterized.

## 2. Main results

Firstly, we cite a lemma which will be used in our proof.

Lemma 1. (See [8].) Let $u$, $v$ be two vertices of the connected graph G. Suppose $v_{1}, v_{2}, \cdots, v_{s}\left(1 \leq s \leq d_{v}\right)$ are some vertices of $N_{G}(v) \backslash N_{G}(u)$ and $x=\left(x_{1}, x_{2}, \cdots, x_{n}\right)^{T}$ is the Perron vector of $G$, where $x_{i}$ corresponds to the vertex $v_{i}(1 \leq i \leq n)$. Let $G^{*}$ be the graph obtained from $G$ by deleting the edges $\left(v, v_{i}\right)$ and adding the edges $\left(u, v_{i}\right)$ $(1 \leq i \leq s)$. If $x_{u} \geq x_{v}$, then $\rho(G)<\rho\left(G^{*}\right)$.

Let $T_{n, \alpha}$ be the set of trees of order $n$ with independence number $\alpha$. Denote $\alpha=n-e$. Since $\left\lceil\frac{n}{2}\right\rceil \leq \alpha=n-e \leq n-1$, we have $1 \leq e \leq\left\lfloor\frac{n}{2}\right\rfloor$. If $e=1$, then $T_{n, n-1}=\left\{K_{1, n-1}\right\}$, where $K_{1, n-1}$ is the star of order $n$. Hence we will assume that $e \geq 2$ in the following discussion.

Let $S_{n, n-e}^{1}$ be a set of trees on $n$ vertices obtained from the star $K_{1, e-1}\left(V\left(K_{1, e-1}\right)=\right.$ $\left\{v_{0}, v_{1}, \ldots, v_{e-1}\right\}$ and $\left.d_{K_{1, e-1}}\left(v_{0}\right)=e-1, d_{K_{1, e-1}}\left(v_{1}\right)=\cdots=d_{K_{1, e-1}}\left(v_{e-1}\right)=1\right)$ by attaching at least one pendant edge to each vertex of $\left\{v_{0}, v_{1}, \ldots, v_{e-1}\right\}$ so that the total number of the leaves in $S_{n, n-e}^{1}$ is $n-e$. Let $S_{n, n-e}^{2}$ be a set of trees on $n$ vertices obtained from the star $K_{1, e}\left(V\left(K_{1, e}\right)=\left\{v_{0}, v_{1}, \ldots, v_{e}\right\}\right.$ and $d_{K_{1, e}}\left(v_{0}\right)=e, d_{K_{1, e}}\left(v_{1}\right)=$ $\cdots=d_{K_{1, e}}\left(v_{e}\right)=1$ ) by attaching at least one pendant edge to each vertex of $\left\{v_{1}, \cdots, v_{e}\right\}$ so that the total number of the leaves in $S_{n, n-e}^{2}$ is $n-e-1$, where $e \neq \frac{n}{2}$. Notice that $S_{n, n-e}^{1}, S_{n, n-e}^{2} \subseteq T_{n, n-e}$ (see Fig. 1).

# https://daneshyari.com/en/article/4598816 

Download Persian Version:

## https://daneshyari.com/article/4598816

## Daneshyari.com


[^0]:    * Corresponding author.

    E-mail addresses: jcy12@mails.tsinghua.edu.cn (C. Ji), mlu@math.tsinghua.edu.cn (M. Lu).

