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We derive an upper bound on the size of a ball such that the 
image of the ball under quadratic map is strongly convex and 
smooth. Our result is the best possible improvement of the 
analogous result by Polyak [1] in the case of a quadratic map. 
We also generalize the notion of the joint numerical range of 
m-tuple of matrices by adding vector-dependent inhomoge-
neous term and provide a sufficient condition for its convexity.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction and main result

1.1. Polyak convexity principle

Convexity is a highly appreciated feature which can drastically simplify analysis of 
various optimization and control problems. In most cases, however, the problem in ques-
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tion is not convex. In [1] Polyak proposed the following approach which proved to be 
useful in many applications [2,3]: to restrict the optimization or control problem to a 
small convex subset of the original set. More concretely, for a map yi = fi(x) from Rn

to R
m, instead of the full image F (f) ≡ f(Rn) = {f(x) : x ∈ R

n}, which is not nec-
essarily convex, let us consider an image of a small ball Bε(x0) = {x : |x − x0|2 ≤ ε2}. 
For a regular point x0 of fi(x) there is always small ε such that the image f(Bε(x0))
is convex. The underlying idea here is very simple: for any x from a small vicinity of a 
regular point x0, where rank (∂f(x0)/∂x) = m, the map f(x) can be approximated by a 
linear map

yi(x) − yi(x0) �
∂fi
∂xa

∣∣∣∣
x0

(x− x0)a . (1.1)

Since the linear map preserves strong convexity, so far the nonlinearities of f(x) are small 
and can be neglected, the image of a small ball around x0 will be convex. Reference [1]
computes a conservative upper bound on ε ≤ εP in terms of the smallest singular value 
ν of the Jacobian J(x0) ≡ ∂f

∂x

∣∣∣
x0

and the Lipschitz constant L of the Jacobian ∂f(x)/∂x
inside Bε(x0),

ε2
P = ν2

4L2 . (1.2)

The resulting image of Bε(x0) satisfies the following two properties.

1. The image f(Bε(x0)) is strictly convex.
2. The pre-image of the boundary ∂f(Bε(x0)) belongs to the boundary ∂Bε(x0) = {x :

|x − x0|2 = ε2}. The interior points of Bε(x0) are mapped into the interior points 
of f(Bε(x0)).

1.2. Local convexity of quadratic maps

In this paper we consider quadratic maps from Rn (or Cn) to Rm of general form

fi(x) = x∗Ai x− v∗i x− x∗vi , (1.3)

defined through an m-tuple of symmetric (hermitian) n ×n matrices Ai and an m-tuple 
of vectors vi ∈ R

n (or vi ∈ C
n). Most of the results are equally applicable to both 

real x ∈ R
n and complex x ∈ C

n cases. The symbol ∗ denotes transpose or hermitian 
conjugate correspondingly. Occasionally we will also use T to denote transpose for the 
explicitly real-valued quantities.

Applying the general theory of [1] toward (1.3) one obtains (1.2), where ν2 is the small-
est eigenvalues of the symmetric m ×m matrix Re(v∗i vj) and the Lipschitz constant L

for (1.3) can be defined through
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