

Convexity of a small ball under quadratic map

Anatoly Dymarsky^{a,b,*}

 ^a Center for Theoretical Physics, MIT, Cambridge, MA 02139, USA
^b Skolkovo Institute of Science and Technology, Novaya St. 100, Skolkovo, Moscow Region, 143025, Russia¹

ARTICLE INFO

Article history: Received 23 February 2015 Accepted 3 September 2015 Available online 30 September 2015 Submitted by P. Semrl

MSC: 15A60 15A22 52A20

Keywords: Convexity Quadratic transformation (map) Joint numerical range Trust region problem

ABSTRACT

We derive an upper bound on the size of a ball such that the image of the ball under quadratic map is strongly convex and smooth. Our result is the best possible improvement of the analogous result by Polyak [1] in the case of a quadratic map. We also generalize the notion of the joint numerical range of m-tuple of matrices by adding vector-dependent inhomogeneous term and provide a sufficient condition for its convexity. © 2015 Elsevier Inc. All rights reserved.

1. Introduction and main result

1.1. Polyak convexity principle

Convexity is a highly appreciated feature which can drastically simplify analysis of various optimization and control problems. In most cases, however, the problem in ques-

 $\label{eq:http://dx.doi.org/10.1016/j.laa.2015.09.005} 0024-3795 \end{tabular} 0215$ Elsevier Inc. All rights reserved.

^{*} Correspondence to: Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Building 3, Moscow 143026, Russia.

E-mail address: dymarsky@mit.edu.

¹ Permanent address.

tion is not convex. In [1] Polyak proposed the following approach which proved to be useful in many applications [2,3]: to restrict the optimization or control problem to a small convex subset of the original set. More concretely, for a map $y_i = f_i(x)$ from \mathbb{R}^n to \mathbb{R}^m , instead of the full image $\mathscr{F}(f) \equiv f(\mathbb{R}^n) = \{f(x) : x \in \mathbb{R}^n\}$, which is not necessarily convex, let us consider an image of a small ball $B_{\varepsilon}(x_0) = \{x : |x - x_0|^2 \le \varepsilon^2\}$. For a regular point x_0 of $f_i(x)$ there is always small ε such that the image $f(B_{\varepsilon}(x_0))$ is convex. The underlying idea here is very simple: for any x from a small vicinity of a regular point x_0 , where rank $(\partial f(x_0)/\partial x) = m$, the map f(x) can be approximated by a linear map

$$y_i(x) - y_i(x_0) \simeq \left. \frac{\partial f_i}{\partial x^a} \right|_{x_0} (x - x_0)^a \ . \tag{1.1}$$

Since the linear map preserves strong convexity, so far the nonlinearities of f(x) are small and can be neglected, the image of a small ball around x_0 will be convex. Reference [1] computes a conservative upper bound on $\varepsilon \leq \varepsilon_P$ in terms of the smallest singular value ν of the Jacobian $J(x_0) \equiv \frac{\partial f}{\partial x}\Big|_{x_0}$ and the Lipschitz constant L of the Jacobian $\partial f(x)/\partial x$ inside $B_{\varepsilon}(x_0)$,

$$\varepsilon_P^2 = \frac{\nu^2}{4L^2} \ . \tag{1.2}$$

The resulting image of $B_{\varepsilon}(x_0)$ satisfies the following two properties.

- 1. The image $f(B_{\varepsilon}(x_0))$ is strictly convex.
- 2. The pre-image of the boundary $\partial f(B_{\varepsilon}(x_0))$ belongs to the boundary $\partial B_{\varepsilon}(x_0) = \{x : |x x_0|^2 = \varepsilon^2\}$. The interior points of $B_{\varepsilon}(x_0)$ are mapped into the interior points of $f(B_{\varepsilon}(x_0))$.

1.2. Local convexity of quadratic maps

In this paper we consider quadratic maps from \mathbb{R}^n (or \mathbb{C}^n) to \mathbb{R}^m of general form

$$f_i(x) = x^* A_i x - v_i^* x - x^* v_i , \qquad (1.3)$$

defined through an *m*-tuple of symmetric (hermitian) $n \times n$ matrices A_i and an *m*-tuple of vectors $v_i \in \mathbb{R}^n$ (or $v_i \in \mathbb{C}^n$). Most of the results are equally applicable to both real $x \in \mathbb{R}^n$ and complex $x \in \mathbb{C}^n$ cases. The symbol * denotes transpose or hermitian conjugate correspondingly. Occasionally we will also use ^T to denote transpose for the explicitly real-valued quantities.

Applying the general theory of [1] toward (1.3) one obtains (1.2), where ν^2 is the smallest eigenvalues of the symmetric $m \times m$ matrix $\operatorname{Re}(v_i^* v_j)$ and the Lipschitz constant L for (1.3) can be defined through

Download English Version:

https://daneshyari.com/en/article/4598817

Download Persian Version:

https://daneshyari.com/article/4598817

Daneshyari.com