Convexity of a small ball under quadratic map

Anatoly Dymarsky ${ }^{\text {a,b,* }}$
${ }^{\text {a }}$ Center for Theoretical Physics, MIT, Cambridge, MA 02139, USA
b Skolkovo Institute of Science and Technology, Novaya St. 100, Skolkovo, Moscow Region, 143025, Russia ${ }^{1}$

A R T I C L E I N F O

Article history:

Received 23 February 2015
Accepted 3 September 2015
Available online 30 September 2015
Submitted by P. Semrl

MSC:

15A60
15A22
52A20

Keywords:
Convexity
Quadratic transformation (map)
Joint numerical range
Trust region problem

A B S T R A C T

We derive an upper bound on the size of a ball such that the image of the ball under quadratic map is strongly convex and smooth. Our result is the best possible improvement of the analogous result by Polyak [1] in the case of a quadratic map. We also generalize the notion of the joint numerical range of m-tuple of matrices by adding vector-dependent inhomogeneous term and provide a sufficient condition for its convexity.
© 2015 Elsevier Inc. All rights reserved.

1. Introduction and main result

1.1. Polyak convexity principle

Convexity is a highly appreciated feature which can drastically simplify analysis of various optimization and control problems. In most cases, however, the problem in ques-

[^0]tion is not convex. In [1] Polyak proposed the following approach which proved to be useful in many applications [2,3]: to restrict the optimization or control problem to a small convex subset of the original set. More concretely, for a map $y_{i}=f_{i}(x)$ from \mathbb{R}^{n} to \mathbb{R}^{m}, instead of the full image $\mathscr{F}(f) \equiv f\left(\mathbb{R}^{n}\right)=\left\{f(x): x \in \mathbb{R}^{n}\right\}$, which is not necessarily convex, let us consider an image of a small ball $B_{\varepsilon}\left(x_{0}\right)=\left\{x:\left|x-x_{0}\right|^{2} \leq \varepsilon^{2}\right\}$. For a regular point x_{0} of $f_{i}(x)$ there is always small ε such that the image $f\left(B_{\varepsilon}\left(x_{0}\right)\right)$ is convex. The underlying idea here is very simple: for any x from a small vicinity of a regular point x_{0}, where $\operatorname{rank}\left(\partial f\left(x_{0}\right) / \partial x\right)=m$, the map $f(x)$ can be approximated by a linear map
\[

$$
\begin{equation*}
y_{i}(x)-\left.y_{i}\left(x_{0}\right) \simeq \frac{\partial f_{i}}{\partial x^{a}}\right|_{x_{0}}\left(x-x_{0}\right)^{a} \tag{1.1}
\end{equation*}
$$

\]

Since the linear map preserves strong convexity, so far the nonlinearities of $f(x)$ are small and can be neglected, the image of a small ball around x_{0} will be convex. Reference [1] computes a conservative upper bound on $\varepsilon \leq \varepsilon_{P}$ in terms of the smallest singular value ν of the Jacobian $\left.J\left(x_{0}\right) \equiv \frac{\partial f}{\partial x}\right|_{x_{0}}$ and the Lipschitz constant L of the Jacobian $\partial f(x) / \partial x$ inside $B_{\varepsilon}\left(x_{0}\right)$,

$$
\begin{equation*}
\varepsilon_{P}^{2}=\frac{\nu^{2}}{4 L^{2}} \tag{1.2}
\end{equation*}
$$

The resulting image of $B_{\varepsilon}\left(x_{0}\right)$ satisfies the following two properties.

1. The image $f\left(B_{\varepsilon}\left(x_{0}\right)\right)$ is strictly convex.
2. The pre-image of the boundary $\partial f\left(B_{\varepsilon}\left(x_{0}\right)\right)$ belongs to the boundary $\partial B_{\varepsilon}\left(x_{0}\right)=\{x$: $\left.\left|x-x_{0}\right|^{2}=\varepsilon^{2}\right\}$. The interior points of $B_{\varepsilon}\left(x_{0}\right)$ are mapped into the interior points of $f\left(B_{\varepsilon}\left(x_{0}\right)\right)$.

1.2. Local convexity of quadratic maps

In this paper we consider quadratic maps from \mathbb{R}^{n} (or \mathbb{C}^{n}) to \mathbb{R}^{m} of general form

$$
\begin{equation*}
f_{i}(x)=x^{*} A_{i} x-v_{i}^{*} x-x^{*} v_{i} \tag{1.3}
\end{equation*}
$$

defined through an m-tuple of symmetric (hermitian) $n \times n$ matrices A_{i} and an m-tuple of vectors $v_{i} \in \mathbb{R}^{n}$ (or $v_{i} \in \mathbb{C}^{n}$). Most of the results are equally applicable to both real $x \in \mathbb{R}^{n}$ and complex $x \in \mathbb{C}^{n}$ cases. The symbol ${ }^{*}$ denotes transpose or hermitian conjugate correspondingly. Occasionally we will also use ${ }^{T}$ to denote transpose for the explicitly real-valued quantities.

Applying the general theory of [1] toward (1.3) one obtains (1.2), where ν^{2} is the smallest eigenvalues of the symmetric $m \times m$ matrix $\operatorname{Re}\left(v_{i}^{*} v_{j}\right)$ and the Lipschitz constant L for (1.3) can be defined through

https://daneshyari.com/en/article/4598817

Download Persian Version:
https://daneshyari.com/article/4598817

Daneshyari.com

[^0]: * Correspondence to: Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Building 3, Moscow 143026, Russia.

 E-mail address: dymarsky@mit.edu.
 ${ }^{1}$ Permanent address.

