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The notion of asymptotic variance has been used as a means 
for gauging the performance of Markov chain Monte Carlo 
(MCMC) methods. For an effective MCMC simulation, it is 
imperative to first construct a Markov model with minimal 
asymptotic variance. The construction of such a stochastic 
matrix with prescribed stationary distribution as well as opti-
mal asymptotic variance amounts to an interesting variation-
ally constrained inverse eigenvector problem. Cast against a 
specially defined oblique coordinate system, the worst-case 
analysis of the asymptotic variance can be formulated as a 
problem of minimizing the logarithmic 2-norm of a restricted 
resolvent matrix over a convex and compact monoid. Based 
on this framework, this paper proposes employing global op-
timization techniques as a general instrument for numerical 
construction of optimal transition matrices. Numerical exper-
iments manifest the complexity of the underlying problem. 
First, new global solutions different from the conventional 
structure characterized in the literature are found across 
the board for reversible problems. Second, local solutions 
with high frequencies of occurrence appear widespread for 
nonreversible problems. In all, the approach via the global 
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optimization techniques is a feasible and practical means for 
numerical construction of the optimal Markov chain.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

For decades Markov chain Monte Carlo (MCMC) methods have been employed as a 
practical tool in a wide variety of applications such as Bayesian statistics, computational 
physics, genetics, and machine learning. See, for example, [3,13,24,26,27]. The meth-
ods become particularly useful when generating independent and identically distributed 
(i.i.d.) samples is not feasible or when the underlying distribution is not completely 
known. The basic idea underlying the MCMC is to construct a Markov chain with the 
desired distribution as its invariant distribution with the hope that, as the procedure 
runs long enough, the samples generated from the Markov chain serve as a good approx-
imation to the would-be samples drawn from the unknown distribution. A key question 
to ask is how good an approximation is and the answer depends on the comparison crite-
ria [2,4,19]. In the literature, one of the commonly employed measurements for gauging 
the performance of an MCMC algorithm is the so-called asymptotic variance which is 
the focus of this paper.

As a motivation, we briefly explain why the notion of asymptotic variance is 
a reasonable criterion for evaluating the performance of the MCMC methods. Let 
S = {1, 2, · · · , n} represent a finite state space and π be a probability distribu-
tion on S. It is often the case that we are interested in evaluating the expectation 
E(f) =

∑
x∈S f(x)π(x), where f is a real-valued function defined on S. When the closed-

form calculation is not easy, we could appeal to the MCMC. Assume X0, X1, . . . is a 
discrete time Markov chain on S with some transition probability matrix P and invari-
ant distribution π. We then use the time average 1

n

∑n−1
i=0 f(Xi) as an estimation for the 

space average E(f), because by the strong law of large numbers we should have∑n−1
i=0 f(Xi)

n

a.s.−→ E(f). (1)

In such a scenario, the asymptotic variance2 is defined by

ν(f, P ) := lim
n→∞

nEμ0

[∑n−1
i=0 f(Xi)

n
− E(f)

]2

, (2)

2 Strictly speaking, the expression in (2) measures the asymptotic mean squared error of the time average 
as an estimator for E(f). If the initial distribution μ0 is precisely π, then the asymptotic mean squared error 
is equivalent to the asymptotic variance. In general, the initial distribution is biased, though might be of 
smaller order. The two notions are equivalent only if the limit distribution of limn→∞ n 

(∑n−1
i=0 f(Xi)

n − E(f)
)

has zero mean, which is implicitly assumed in applications.
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